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Abstract. It is shown that Maxwell equations in vacuum derive from an underlying topological structure 
given by a scalar field ~b which represents a map S 3 x R ~ S 2 and determines the electromagnetic field 
through a certain transformation, which also linearizes the highly nonlinear field equations to the 
Maxwell equations. As a consequence, Maxwell equations in vacuum have topological solutions, 
characterized by a Hopf index equal to the linking number of any pair of magnetic lines. This allows the 
classification of the electromagnetic fields into homotopy classes, labeled by the value of the helicity. 
Although the model makes use of only c-number fields, the helicity always verifies S A" B d3r = na, n 
being an integer and a an action constant, which necessarily appears in the theory, because of reasons 
of dimensionality. 

AMS subject classifications (1980). 78A25; 8lB. 

1. Introduction 

Topology will play a very important role in future field theory. Since 1931, when 
Dirac proposed his beautiful idea of the monopole, topological models have a 
growing place in physics. For the purpose of introducing this Letter, we could 
summarize this line of work by quoting the s ine~iordon equation, the 't H o o f t -  
Polyakov monopole, the Skyrme and Faddeev models, the Bohm-Aharonov effect, 
Berry's phase, or Chern-Simons terms [1-10]. 

This Letter proposes a model of an electromagnetic field in which the magnetic 
helicity S A" B dar is a topological constant of the motion, which allows the 
classification of  the possible fields into homotopy classes, as it is equal to the linking 
number of any pair of magnetic lines. The treatment is classical throughout in the 
sense that all the fields are c-numbers and no second quantization is performed. The 
case of  q-numbers is surely much more complex. 

2. Electromagnetic Field Model with Hopf Index 

Let ~(r, t) and 0(r, t) be two complex scalar fields representing maps R 3 x R ~ C. 
By identifying R 3 n  { ~ }  with S 3 and C n { ~ }  with S 2, via stereographic projection, 
~b and 0 can be understood as maps S 3 • R ~ S 2. We then define the antisymmetric 
tensors F~,~, G.v to be equal to 

F.v =f.~(c~) = 2~i (1 + ~ * ~  ' (1) 
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Gvv =f.v(O) ~ av0* 0v0 - dr0* eu0 
= 2 = i  , 

where a is an action constant, introduced so that F~v and Guy will have suitable 
dimensions for electromagnetic fields, and prescribe that G 0 be the dual of  F U or, 
equivalently, 

Ouv= �89 F~v = -�89 "#, (3) 

where we take c ~ +1.  To fulfill this requirement, ~b is a scalar and 0 a 
pseudoscalar. This allows the defining of  the magnetic and electric fields B and E as 

ro,=E, ,  ro.=--%kBk; Go,=B,, Go=Ei:kE k. (4) 

After that, we take the Lagrangian density 

L = -~(Fu~F u~ + Gu~GU~), (5) 

We then impose the duality condition or constraint 

M,# = V~o - �89162 u~ = 0. (6) 

Following the method of Lagrange multipliers, instead of (5), we take the modified 
Lagrangian density 

L '  = L +/~'PM,~, (7) 

where the multipliers are the component of  the constant tensor g'r A simple 
calculation shows that constraint (6) does not contribute to the Euler-Lagrange 
equations, which happen to be 

O,F "# O~ck = O, O,F ~# 0~b* = O, (8a,b) 

O,G "# 0#0 = O, O,G "# 0#0" = 0, (9a,b) 

and this means that, if the Cauchy data (~b, d0~b, 0, 000) at t = 0 verify the constraint 
(6), it will be maintained for all t > 0. Surprisingly, it follows that both F,# and G,# 
verify Maxwell equations in vacuum. In fact, definitions (1) and (2) imply that 

independently of  the functions ~b and 0, this being precisely the first pair of  Maxwell 
equations for the two tensors. On the other hand, as F,# and G,# are dual to each 
other, it follows from (3) and (10) that 

O,F'P=O, O~G'#=O, f l = 0 , 1 , 2 , 3 ,  ( l l a ,b )  

which is the second Maxwell pair for the two tensors. In other words, /f  4~ and 0 
obey the Euler-Lagrange equations (8), (9), then F,# and G~#, defined by (1), (2), 
verify the Maxwell ones and are, therefore, electromagnetic fields of  the standard 
theory. The reason is that Maxwell equations in vacuum have the property that, if 
two dual tensors verify the first pair, they also verify the second one (i.e. the two 
pairs are dual to each other). 
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The following notation will be used. A standard electromagnetic field is any 
solution of Maxwell equations; an admissible electromagnetic field is one which can 
be deduced from a scalar q~ through (1). In this last case, let f~v(q~) be the 
electromagnetic tensor F~v. The electric and magnetic vectors of ~b, E(~b) and B(~b), 
respectively, are 

E,(q~) =fo,(~b), B,(~b) = (12) 

With this notation, the duality constraint is written 

E(q~) = - B(0), B(~b) = E(0). (13) 

It is necessary to characterize the Cauchy data { q~( r, 0), 0t ~b(r, 0), 0(r, 0), d, 0(r, 0)}. 
As was shown before, if they verify condition (3) at t = 0, they also satisfy it for all 
t > 0. In this case, the Cauchy data and the corresponding solution of Maxwell 
equations are admissible. The problem then arises whether there exist admissible 
data, but that seems guaranteed at first sight, since (3) is a set of six real PDEs for 
eight real functions. That it is indeed the case and admissible data exist, is clear from 
the following considerations. 

From the two facts (a) E(q~) and B(q~) are mutually orthogonal (because of (1)) 
and (b) B(4~) is tangent to the curves ~b = const and B(0) is tangent to 0 = const, it 
follows that these two sets of curves must be orthogonal. Let 4ffr, 0) be any complex 
function with the only condition that the 1-forms d~b and d~b* in R 3 are linearly 
independent. The previous condition on 0 can be written as 

(Vq~* • Vq~) �9 (V0* • V0) =0 ,  (14) 

which, given 4~, is a complex PDE for the complex function 0; we will admit that 
it has solutions (later we will make use of an explicit example). This gives 4ffr, 0) 
and 0(r, 0). The time derivatives 0,q~(r, 0) and 0,0(r, 0) are then fixed by condition 
(13). For instance, B(0) is a linear combination of V~b* and Vq~, 

B(0) = b V~b* + b* V~b. (15) 

The function b(r, 0) can be determined from q~(r, 0) and 0(r, 0) and, according to 
(1). 

l ~0~* Vr - ~04'V4,* 
E(~b) = 2r~i (1 + ~b*q~) 2 = -B(0),  (16) 

the value of 0o~b can be computed from (15) and (16). To obtain ~o0, we would 
proceed in an analogous way. Consequently, there is no difficulty with the Cauchy 
problem, the system having two degrees of freedom with a differential constraint. 

Up to now, we have used a pair of fields (~b, 0), but it is easy to understand that 
0 is no more than a convenience which can be dispensed with. In fact, one can 
forget about 0 and use only the scalar q~, taking 

L = -�88 u~, F.v =f~(~b), (17) 
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as Lagrangian density and accepting only Cauchy data [0b(r, 0), r 0)] for which 
there exists an auxiliary function 0 verifying (3) and (14). From this point of view, 
the electromagnetic field would be a scalar. From now on, the 0 field will be 
considered only as an auxiliary function. The basic field equations of the model thus 
take the form 

= 0  (J8) 

and are transformed into Maxwell equations through (1). 
We may state these results as follows: 

(i) In a theory of the fields ~b and 0 based on the Lagrangian (5) with the 
constraint (6), the tensors F~a and G~a defined by (1) and (2) obey Maxwell 
equations. This means that the standard electromagnetic theory can be derived from 
an underlying structure. 

(ii) Formulae (1) and (2) can be understood as defining a transformation 

T: ~b ---} Fur =f~v(~b), 0 --* Guy =fur(0) (19) 

which transforms the highly nonlinear Euler-Lagrange equations in ~b (8), (9) into 
Maxwell equations. We can thus say that (8) and (9) are C-integrable, at least in a 
weak form [ 11], since they can be linearized by change of variables. 

(iii) The transformation T is not invertible, because there are solutions of 
Maxwell equations H~,v, such that T-~(H~,,) is not defined, that is to say, that a 
scalar field ~b such that H,v =fu,(~b) does not exist. 

These solutions of  Maxwell equations are not included in this theory. As we will see 
in Section 4, this exclusion is only important for nonweak fields. 

The use of the spheres S 3 and S 2 may remind us of Chern-Simons terms. But, as 
S 3 represents the physical space R 3 via stereographic projection and S 2, identified 
with the complex plane, is the space where the field takes values, this model does 
not really make use of these kind of terms (for a review of Chern-Simons terms, see 
Jackiw [9-10]). Flato and Fronsdal proposed a very interesting scheme to make 
light out of simpler objects [ 12]. Although, this aim is shared by the present work, 
the two approaches seem to be different. 

As will be shown in the next section, it is not possible to distinguish between this 
model and the Maxwell one if the fields are weak. However, every ~b solution defines 
at any time t a map S 3 ---} S 2 which has a topological charge, obviously independent 
on t. 

3. The Topological Charge 

Since the field ~ defines a map S 3 ~ S 2 at any time, the corresponding Hopf  index 
[ 13-19], expressed as 

n = -- A" B dSr, (20) 
3 
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where curl A = B, is a topological constant of the motion. Its value is an integer equal 
to the linking number of  any pair of magnetic lines. This allows the classification of 
the solutions in homotopy classes. 

The quantity f A .  B d3r, known in plasma physics as magnetic helicity [20-21], is 
used in the study of tokamaks and is quite akin to the helicity used in fluid dynamics, 
where the roles of B and A are played by the vorticity and the velocity [22]. 

4. Maxwell Theory is the Weak Field Limit of This Model 

Although our F~v verifies Maxwell equations, this model is not completely equivalent 
to standard theory. However, we shall prove in this section that, in the weak field 
case, this theory is equivalent to Maxwell plus the condition that the electric and 
magnetic vectors be orthogonal, E" B = 0, in the sense that all the standard 
electromagnetic fields which are weak and verify this requisite are arbitrarily close 
to others which are admissible. In order to do that, we must introduce some 
definitions and fix the notation. 

If 4)'4) ,~ 1 so that the denominator in (1) can be taken as being equal to one, then 

Fvv =Lv(4)) = ~ ja  (c~ aS* c~v4 ) - (?v4)* ~3,4)). (21) 
2hi " u,- 

This equation defines the meaning of for. As a consequence, if 4) is a solution, 24) 
is another one or, otherwise stated, if (E, B) is a solution, (2"2E, 2"2B) is also a 
solution. 

The norms of a scalar r t) and a tensor Fur(r, t) = [E(r, t), B(r, r)] in a domain 
Z are defined as 

tl4)11  = sup{14)l ,  10 4)1} =0 ,  l, 2, 3, (r, t) eZ), (22) 

IIF/I~ = sup{[Bit, [E,[} ( i =  1,2, 3,(r,  t) eZ).  (23) 

In the following, f~ will refer to a domain in spacetime R* and D to a domain 
in three-space R 3. The subscripts f~ or D will be omitted when there is no risk 
of confusion. The fields 4) or F,v will be said to be weak if their norms are 
small. 

We now proceed to prove that, although not all electromagnetic fields F~,v can be 
deduced from a scalar according to (1), all can be derived from a 4) by means of (21). 
This is the content of Propositions 1 and 2. 

PROPOSITION 1. Let a divergenceless vector f ietd B be given in R 3. There then exists 

a complex function 4) = ~ + ifl, such that its limit when r --* oo does not depend on the 
direction and such that, by defining the antisymmetric tensor Fjk through (21), the 
following equality holds 

B, = 1 x~ ~ --~e,jkFjk = - (V~x x Vfl),, (24) 
7[ 

Moreover, i f  B is small enough, 4) can be made as small as desired. 
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The fact that the vorticity to can be written as the vector product of two gradients 
is well known in fluid mechanics where a and fl, called Clebsch variables (see, for 
instance, [23] or [24]), are used to put the fluid equations into Hamiltonian form. 
Since the proof is based in the divergenceless character of to, it also applies to the 
case of the magnetic field and, for brevity, will not be given here. Obviously, 0t and 
fl are not uniquely determined. For instance, we could take (a + aft, fl) instead of 
(a, fl), a being a constant number. 

We now assume that B is bounded in a certain domain D of  R 3. If  B is changed 
to a2B, it suffices changing a, fl to act, aft, from which it follows that if B is small 
enough in D, 4~*~b = ~2+ f12 is also small in D. 

PROPOSITION 2. Let us assume the hypothesis of  Proposition 1 and let a field E 
orthogonal to B be given in R 3. Then there exists a complex function doq~ = dog + 

i doff such that 

E, = ~ (do~ 0,[3 - doff di~). (25) 
it 

The proof is simpie. As E is orthogonal to B, it is a linear combination of the 
gradients V~, Vfl, so that it is always possible to find functions do~ and doff, verifying 
(25). Moreover, they are small in the domain D if E and B are small enough in D. 

If Fur is a standard electromagnetic field which is weak enough, there is an 
admissible field arbitrarily close to it. This is proved in a precise form in the following 
proposition. 

PROPOSITION 3. Let Fur(r, t) be a solution of Maxwell equations corresponding to 
the Cauchy data F~v(r, 0) which verify E " B = 0 at t = O. Then, i f  D is a domain in 
R 3, for any E > O, there is an q = q(e, D) such that i f  [IF.v(r, 0)I[~, < ~t, there exist a 
scalar (a and an admissible electromagnetic field F'~v =fuv(q~), such that in a four- 
dimensional domain f~, R 4 ~ t) ~ D, Fur and F'~v are closer than E in the sense of the 
following inequality 

r ' ~  Fur < E (U, v = 0, 1, 2, 3). (26) 

Proof According to Proposition 1, two functions qJ(r, 0), {(r, 0) exist such that 

8 ,  = e ,  = 

and, following Proposition 2, derivatives dock(r, 0), d0G(r, 0) also exist such that, at 
t = 0, 

F~,v = f ~  (~k). (27) 

Moreover, by taking Fu~ small enough, we can make ]l~bll < e', H~]] < e', in any 
domain in which Fu~ is bounded, for any e'. 

As the curves ~O(r, 0) = const and r 0) = const are orthogonal, we can define 
admissible Cauchy data as indicated in Section 2 with ~b(r, 0)=~b(r, 0), 
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0(r, 0 ) =  ~(r, 0) and the correlative values of  a0~b(r, 0) and d00(r, 0). Let the 
corresponding electromagnetic field be denoted as F',~. At t = 0, the following is 
true 

l -:,:kf:~(~), (28) 

E, = --~%k:k(O), Ei --~q:kf:k(O), (29) 

From this and (1) and (28), it follows that 

B; = B i [ 1  - -  2~b'4~ + O((q~*~b)2)], B~ = B,[1 - 2~b*~b + O((tb*q~)2)] (30) 

and, as if t = 0, 4~*~b ~< E', 0"0 ~< e', inequality (27) follows, after taking E '<  r 
Hence, there are two sets of Cauchy data, F,~(r, 0) and F~(r ,  0), which are 

arbitrarily close. The properties of Maxwell equations guarantee that this proximity 
is maintained in a four-dimensional domain fl = D. 

The consequence is important. Any weak-enough standard electromagnetic field 
with E ' B  = 0  at t = 0  is arbitrarily close to a set of Cauchy data which are 
admissible in this theory. The physical interpretation of  this property is that, for 
weak electromagnetic fields, this theory reduces to Maxwell, plus the restriction 
E - B  = 0, at zero order in the norm of F,~. For, taking as Cauchy data the 
electromagnetic tensor Fu~ at time t, there always exist functions ~b and O0~b from 
which they can be deduced according to (1), at zero order in q~*qJ (if one can neglect 
this quantity in the denominator). However, it must be stressed that this is not the 
case for strong fields, since, although a function ~ exists which verifies (21), another 
one does not necessarily exist for which (1) is valid, so that large standard 
electromagnetic fields may not be included in this model. It is clear that if q~ is weak 
only in a certain domain of spacetime, the model would only reduce there to the 
standard one. 

If  the theory is observed from the point of  view of the vectors E and B, it seems 
linear, although it is not so by any means. It can be said, therefore, that the 
nonlinearity is hidden. In spite of that, it has two important consequences. Not  all 
the strong field solutions of  Maxwell equations are admissible and there is a 
topological constant of  the motion, given by the Hopf  index (20). 

5. Standard Electromagnetic Fields which are Hopf Knots 

The field equations (18) are very difficult to solve. Perhaps their most interesting 
problem is to know what the basic solutions with a unit Hopf  index look like. As 
they represent elementary structures, nonhomotopic to the zero solution, from 
which solutions with higher values of the index can be constructed, it could be 
tempting to interpret them as photons. However, this turns out not to be possible, 
although they can be appropriately called quasiphotons. 

Hopf  himself showed that there are $ 3 ~ S  2 maps with nonzero indexes by 
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proposing the following example, written here in R 3 Cartesian coordinates [ 13, 14] 

2(x + iy) 
C~H(X, y ,  Z) -- 2Z + i(r 2 -- 1)' (31) 

where r2=  x 2 -Fy2+ Z 2. It is easy to verify that this map, called the Hopf  map or 
knot, has unit Hopf  index; its B vector has a vortex along the circle x 2 + y 2 =  1, 
z = 0, which is the inverse image of ~b = oo. 

Corresponding to this Hopf  map, in this theory, there exist a solution ~b and a 
corresponding electromagnetic field F,v. Let us consider the initial Cauchy data 

~b(r, 0) = CkH(XX, xy ,  xz) ,  0(r, 0) = [ckH(xy, xz ,  xx)]*, (32) 

where ~bn is the Hopf  map (31), the asterisk means complex conjugation, and x is 
an inverse length parameter giving the extension of the wave. At t = 0, ~b and 0 are 
Hopf  knots around the axis z and x, respectively. In other words, a magnetic vortex 
in the circle x 2 + y2 = 1, z = 0 and an electric one in y2 + z 2 = 1, x = 0, correspond- 
ing to ~b = oo and 0 = oo, respectively. It is simple to see that ~b and 0 verify 
condition (14) and are, therefore, admissible as Cauchy data. The corresponding 
electromagnetic field is a solution of Maxwell equations with the Hopf  index equal 
to one, which means that any pair of magnetic lines is linked once (for symmetry, 
the same happens to any pair of electric lines). To generate solutions with the Hopf 
index equal to n, it suffices to start from the nth power of (32). For brevity, we leave 
their properties and analytic expressions for a future paper [25]. 

7. Final Comments and Summary 

In this Letter, a nonlinear model of the electromagnetic field is presented, which is 
based on the fact that Maxwell equations can be derived from an underlying 
topological structure. Its main characteristics are: 

(i) The fundamental field is a complex scalar ~b defining a map R 3 u {oo} ~ C at 
any time or, equivalently via stereographic projection, a map between the spheres 
$ 3 ~  S 2. Consequently, the solutions are classified in homotopy classes labeled by 

their Hopf  index. 
(ii) Although the basic Euler-Lagrange equations are highly nonlinear, the 

electric and magnetic fields, which are deduced from ~ by means of (1) and (4), 
verify Maxwell equations. In other words, (1) is a transformation which linearizes 
the theory. Not being invertible, however, not all Maxwell solutions can be 
accepted. This implies a weak form of C-integrability [11]. 

(iii) If  the vectors E and B are small, this model is equivalent to standard 
Maxwell theory plus the condition E" B = 0, because the noninvertibility of the 
transformation can be neglected in that case, so that all weak field standard 
electromagnetic fields are admissible. 

(iv) The topological charge given by the Hopf  index has the same expression as 



A TOPOLOGICAL THEORY OF THE ELECTROMAGNETIC FIELD 105 

what is called in plasma physics 'the magnetic helicity' [20, 21] (up to a constant 
action factor) and is quite akin to the helicity used in fluid dynamics [22]. 

(v) Because of this underlying structure, Maxwell equations in vacuum have 
topological solutions in which any pair of magnetic lines is linked n times, n being 
a constant of the motion. If n = 1, it seems proper to call them 'quasiphotons'. The 
individuality of these Hopf knots is maintained by the linking or knottedness of 
their field strength lines. 

The model seems interesting and worthy of further study. It is also noteworthy 
that some of the strong field solutions of Maxwell are not acceptable or, in other 
words, that the phase space is smaller. 

Although admittedly this is a somewhat imprecise comment, it is worth mention- 
ing here the many problems which quantum electrodynamics must face because of 
the divergence of integrals at high energy, so that a reduction of phase space might 
perhaps be welcome, since it could make some integrals converge. 

An observation on the appearance of the action constant a is in order. Because 
of the topological structure, there are elementary excitations which cannot be 
deformed into the trivial solutions following a continuous path (they are not 
homotopic to F~v = 0), the action constant ,z indicating the quantitative importance 
of these excitations. In this way, the topology induces a quantum-like structure, 
since, according to (20), all the solutions verify 

f A "  B d3r = (33) h a ,  

where n is the Hopf index. The magnetic helicity is thus an integer multiple of the 
action constant, in spite of the fact that the theory is classical in the sense that it 
makes use of only c-number fields and no second quantization has been performed. 

All this will be studied in a future paper [25]. 
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