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ABSTRACT. A subtle form of nonlinearity is described. It is shown
that it appears in a topological model of electromagnetism, where it
explains why the electromagnetic helicity and the charge (both elec-
tric and magnetic) can be understood as topological constants of the
motion.

1 Two ways of linearising

Nonlinear field equations are frequently linearised. This is usually per-
formed in two different ways: by truncation or by change of variables.
In the first method, the second and higher order terms are neglected in
the Taylor expansion of the equation. In the second one, the old vari-
ables ug(r,t) are changed to new variables v (r,t) by means of the
equations

v = Gp(u2?, 8,ul?). (1)

[e}%

The first method is useful only when dealing with weak fields u2/¢, while

the second one is possible, it has a much wider validity. In the latter
case, the application to a particular nonlinear field equation would seem
to suggest that the nonlinearity of the first equation is no more than an
accident due to a particularly unfortunate election of the field variables,
so that a completely linear theory is possible, with all the properties of
the linearity.

This is certainly true if the following condition is verified: that the
change of variables (1) is invertible so that the inverse change is well
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new

defined for any vi“ as

(e

uold _ Ha (Ugew7 8M,Ugew)7 (2)

which establishes a one to one correspondence between the solutions of
the old and the new equations. In other words, if the application of (1)
to the set of the solutions of the nonlinear equations gives the complete
set of the solutions of of the linear one, the converse being also true.

We will consider in this paper an example in which this property
does not hold. More precisely, in which the change (1) does not give
all the solutions of the linear equation while effectively linearising the
nonlinear one. This implies that the theory can be formally presented
in a linear language, but not all the linear combinations of solutions are
themselves solutions. In other words, although the theory looks linear
because all its solutions verify a linear equation, it retains some hidden
form of nonlinearity.

This case is the Maxwell’s theory in empty space or with point
charges. The electromagnetic field F),, is writen in terms of a couple
of scalar fields ¢, 6 which obey highly nonlinear equations, but there are
linear combinations of solutions of the Maxwell’s equations that are not
solutions of these equations. However, both equations, the linear and
the nonlinear equations are locally equivalent, their difference being just
on the behaviour at infinity.

2 Why a topological theory of electromagnetism

During a great part of the 19th century, electromagnetism was conceived
in terms of lines of force, which were thought to be very real, not just
a mathematical convenience. One reason for this understanding was,
of course, the belief in the existence of the aether, which offered an
appealing possibility to explain electromagnetic phenomena: the force
lines were a manifestation of its streamlines and vorticity lines. It was
expected, therefore, that the electromagnetism would be eventually un-
derstood thanks to the mechanics of fluids, in a model in which the force
lines would coincide with lines of aether particles and would be there-
fore something real and tangible [1]. Maxwell himself was very much in
favour of Kelvin’s suggestion in 1868 that atoms were knots or links of
the vortex lines of the ether, a picture presented expressively in a paper
called “On vortex atoms” [2, 3, 4]. He liked the idea, as it expressed for
instance in his presentation of the term “Atomism” in the Encyclopaedia
Britannica in 1875 [5, 6].



Hidden nonlinearity in a topological model ... 369

Kelvin had applied to his topological idea the then new Helmholtz’s
theorems on fluid dynamics. He did not like the then widely held view
of infinitely hard point atoms or, in his own words, “the monstrous
assumption of infinitely strong and infinitely rigid pieces of matter” [7].
Kelvin was much impressed by the conservation of the strength of the
vorticity tubes in an inviscid fluid according to Helmholtz’s theorems,
thinking that this was an inalterable quality on which to base an atomic
theory of matter without infinitely rigid entities. We know now that this
is also a trait of topological models, in which some invariant numbers
characterize configurations which are rigid and can deform, distort or
warp. As he put it “Helmholtz has proved an absolutely unalterable
quality in any motion of a perfect liquid ... any portion [of it] has
one recommendation of Lucretius’ atoms — infinitely perennial specific
quality”.

Kelvin had the insight that such knots and links would be extremely
stable, just as matter is. Furthermore, he thought that the variety of
the properties of the chemical elements could be a consequence of the
many different ways in which such curves can be linked or knotted. Two
other important properties of matter, not known in his time [8], can
also be understood. One is the ability of atoms to change into another
kind in a nuclear reaction, which could be related to the breaking and
reconnection of lines, as happens for instance to the magnetic lines in
tokamak and astrophysical plasmas. The other is the discrete character
of the spectrum, which is also a property of the nontrivial topological
configurations of a vector field, as was shown by Moffatt [9].

The reception to Kelvin’s idea was good, but unfortunately it was
soon forgotten. Ironically, this was mainly due to Maxwell’s monumen-
tal Treatise on Electromagnetism, after which, because of the successful
developments of algebra and differential geometry, the line of force was
relegated behind the concepts of electromagnetic tensor F),, and elec-
tromagnetic vectors E;, B;, A,. It is usually now a secondary concept,
always derived from F),, as the integral lines of B and E.

It turns out that a topological theory of electromagnetism is possible.
The rest of this paper contains a terse summary.

3 Force lines and topology

Let us now try to describe the dynamics of the electromagnetic field by
the evolution of its magnetic and electric lines or, in other words, let
us attempt a line-dynamics (For the time being, we consider only the



370 A. F. Ranada

case of empty space; point charges can be introduced later.) As a simple
tentative idea, we may represent the magnetic lines by the equation
o(t,x,y,2) = ¢og where ¢ is a complex function of space and time and
¢o is a constant labeling each line. This means that the magnetic lines
are the level curves of ¢(t,z,y,2). As the magnetic field is tangent to
them, it can always be written as B = g(¢, ¢)V¢ x V¢, because of the
condition V - B = 0 (bars over complex numbers indicating complex
conjugation). This can also be written as

By, = _%fiijija (3)
where
F;w = —g((b, d_))(a,uq_bau(ﬁ - 8l,g2_5({9#¢), (4)

the electric field being E; = Fy;, or E = —g(¢, ¢)(00pV ¢ — 0V ).

As we see, an antisymmetric rank 2 tensor appears, which is similar
to the Faraday tensor. It turns out that E-B = 0 or, equivalently,
det(F),) = 0, the electric and the vector fields being orthogonal, which
means that, with this method, the Faraday 2-form is degenerate and the
field is of radiation type.

We will admit that the total energy is finite, which implies of course
that B and E go to zero at infinity. The simplest way for this condition
to be achieved this condition is requiring that the limit of ¢ when r — oo
does not depend on the direction or, stated otherwise, that ¢ takes only
one value at infinity.

This argument has an important consequence. To take ¢ one-valued
at infinity implies that R3 is, in fact, compactified to S® and that ¢(r,t)
can be interpreted at any time as a map 5% — S2, after identifying, via
stereographic projection, R? U {co} with S% and the complete complex
plane C with S2. Maps of this kind have nontrivial topological proper-
ties, so that the attempt to describe electromagnetism by the evolution of
the magnetic lines, represented as the level curves of a complex function,
leads in a compelling and almost unavoidable way to the appearance of
a topological structure. And a very rich one, as it happens.

Let us consider now the normalized area 2-form o in the sphere S2.
Its pull-back to the S* x R (identified with the spacetime) is

o L 0N

= 2ni (11 00)7 )
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(We take the complex number ¢(r,t) as a coordinate in S2.) As we see,
there is a 2-form closely associated to the scalar ¢, the level curves of
which coincide with the magnetic lines. Since both ¢*¢ and the Faraday
2-form F = $F,,dz" A dz" are closed, it seems natural to identify the
two, up to a normalization constant factor which, for later convenience,
we write as —y/a. More precisely, we assume that

F= 7\/E¢*0—7 (6)
and, consequently,

_ @ 8u¢7)61/¢ B 8V(£6u¢
C2mi (T4¢e2?

(7)

Nz

Note that a is a normalizing constant which takes care that F),, will
have the right dimensions. In natural units, a is a pure number; in MKS
physical units it is an action times velocity.

As long as no charges are present, we can play the same game with
the electric field E and a scalar field 8, the level curves of which coincide
with the electric lines. In that case, if the pull-back of the area 2-form
in S? by 0 is

1 doAdD
' = — 8
77 o (1+ 002 ®)

and the dual to the Faraday form is taken to be
*F = ab*o. (9)
The dual to the Faraday tensor is then

3 0,00,0 0,60,

v =5 — , 10
K 2mi (14 00)2 (10)
so that the following duality condition must be fulfilled
* v 1 vaf
FH = 56” Fos, (11)

which expresses the duality of F and xF. The conditions for the exis-
tence of the pair ¢, 6 will be discussed later; for the moment let us say
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that they pose no difficulty. Equation (11) can be written also somewhat
more formally as

x¢ o = —0%0, (12)

where * is the Hodge or duality operator.

Note that, with the proper Lagrangian density, the field equations
are the Maxwell’s equations written in terms of the scalars ¢ and 6.
They are nonlinear. It happens then that (6) and (9) (or equivalently
(7) and (10)) play the role of the change of variables (1). For details
seen reference [10].

4 Electromagnetic knots

In this section, we describe a curious kind of solution of Maxwell’s equa-
tions in empty space. In order to do that, it is convenient to define a
pair of dual maps ¢,0 : S — S? as two maps that verify equation (12).
This means that the corresponding pull-backs of the area 2-form in S?
define the two tensors F),,, and *F},,, given by equations (7) and (10),
which are dual in the sense of equation (11).

An important property of any pair of dual maps ¢, 0 is that the pull-
backs F = —\/a¢*o and *F = \/a6*c, verify necessarily the Maxwell’s
equations in empty space [10].

The maps S? — S2 can be classified in homotopy classes, character-
ized by their Hopf index, a topological quantity that takes only integer
values. It can be shown that the two Hopf indices are equal if tha maps
are dual. It follows that the magnetic and the electric helicities are
topologically quantized, since they are equal to

hm = A -Bd*r =na, h.= C-Edr = nea, (13)
R3 R3
where n is the Hopf index of both the maps ¢, 8, and A, C are the vector
potentials for B, E , that is Vx A =B, V x C = E.

Let us define now the concept of electromagnetic knot, as an electro-
magnetic knot in which any pair of magnetic lines (or of electric lines) is
a pair of linked loops, except perhaps for some exceptional lines or times
(see Figure 1).

From the mathematical point of view, an electromagnetic knot is an
electromagnetic field generated by a pair of dual maps ¢,6 : S% s S2
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Figure 1: Schematic aspect of several force lines (either magnetic or
electric) of an electromagnetic knot. Any two of the six lines shown are
linked once.

verifying (11)-(12). (In other words, an electromagnetic field which can
be expressed in terms of a pair of dual maps by means of equations (7)
and (10)).

This definition implies that the corresponding Faraday 2-form F and
its dual *F can be written as F = —¢*c and *F = %0, i.e. as minus the
pull-back and the pull-back of the area form in S? ¢ by the two maps.
This will be relevant for the quantization of the charge.

A very important property is that the magnetic and electric lines of
an electromagnetic knot are the level curves of the scalar fields ¢(r,t)
and 0(r,t), respectively. Another is that the magnetic and the electric
helicities are topological constants of the motion, equal to the common
Hopf index of the corresponding pair of dual maps ¢, 8 times a constant
with dimensions of action times velocity.

In an electromagnetic knot, each line is labeled by a complex number.
If there are m lines with the same label, we will say that m is the
multiplicity. If all the pairs of line have the same linking number £, it
turns out that the Hopf index is gives as n = ¢m? [11, 12, 13, 14].
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An electromagnetic knot is a radiation field (i.e. E-B = 0), the
magnetic and electric lines being orthogonal at any point. This means
that E, B and the Poynting vector S = E x B, are three orthogonal
vectors everywhere. The corresponding three families of curves (electric,
magnetic and energy flux lines) form three orthogonal fibrations of S3,
since each family fills all the space, in the sense that a line of each kind
passes through every point (although there may be some exceptional
lines, or one or several of the vectors may vanish at certain points or
times.) This property is allowed by the fact that S® is parallelizable.
Indeed, an electromagnetic knot has a rich structure.

5 Two topological constants of the motion

A model of electromagnetism is possible in which all the radiation fields
are electromagnetic knots as defined above. This model has been cal-
lled the topological model. Surprisingly, it is equivalent to the standard
Maxwell’s theory in empty space or with point charges. A detailed pre-
sentation is given in rerefence [10]. It embodies, furthermore, two topo-
logical quantization laws [14]-[15].

5.1 Topological quantization of the electromagnetic helicity

The electromagnetic helicity is the semisum of the magnetic and electric
helicities given by equations (13), H = (hm + he)/2. It is the Noether
constant of the motion associated to the electromagnetic duality (the
interchange of electricity and magnetism). We can express it as

M= [ % (an9an() - ar (e (). (14)

where ag(k),ar (k) are Fourier transform functions of the field A(r, ),
which in QED are interpreted as the annihilation operators for right-
and left-handed photons ( ag,ar being the corresponding creation op-
erators). In the case of a knot, it follows that

n= 1/d3k (ag(k)ar(k) — ar(k)ar(k)). (15)

a
In QED, the integral in the right hand side of (14) and (15) is the
operator for the difference between the numbers of right-handed and
left-handed photons Nz — Ny,. If the knots are classical, those Fourier
transforms are functions, so that the integral in the right-hand side is the
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classical limit of this difference. Consequently, the value of Ngp — N, for
a knot is topologically quantized and takes the value nac. This suggests
a criterion for the value of the normalizing constant: to take a = 1 in
natural units (this is @ = fic in the the rationalised MKS system and
a = heeg, in SU, €y being the permittivity of empty space). One has
then

n:NR—NL. (16)

Equation (16) relates, in a very simple and appealing way, two meanings
of the term helicity, relating to the wave and particle aspects of the
field. At left, the wave helicity: the Hopf index n, characterizing the
way in which the force lines — either magnetic or electric — curl around
one another (as explained before n = ¢m?, ¢ being the linking number
and m the multiplicity of the map. At right, the particle helicity: the
difference between the numbers of right-handed and left-handed photons.
This is certainly a nice property. It suggests that the electromagnetic
knots are worth of consideration. Note that this property gives a new
interpretation of the number n. We knew that it is a Hopf index. We see
that it is furthermore the difference of the classical limit of the numbers
of right-handed and left-handed photons.

5.2 Topological quantization of the charge

The quantization of the electric charge is one of the most important and
intriguing laws of physics. However, the value of the fundamental charge
is obtained through experiments, all the efforts to predict it — or the
fine structure constant v — within a theoretical scheme having failed so
far.

This important law is usually stated by saying that the electric charge
of any particle is an integer multiple of a fundamental value e, the
electron charge, whose value in the International System of Units is
e =1.6 x 1071 C. The Gauss theorem allows a different, although fully
equivalent, statement of this property: the electric flux across any closed
surface ¥ which does not intersect any charge is always an integer mul-
tiple of e (we will use here the rationalized MKS system). This can be
written as

/E w = ne, (17)
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where w is the 2-form E - ndS, n being a unit vector orthogonal to the
surface, E the electric field and d.S the surface element. We could as well
write (17) as

/E *xF = ne, (18)

*F being the dual to the Faraday 2-form F = 1 F),, dz# Adz”. Stating in
this way the discretization of the charge is interesting because it shows
a close similarity with the expression of the topological degree of a map.
Equation (9) shows that in the topological model with a = 1 (a = v/hc

in the MKS system)
/ xcal F = / 0*c =n, (19)
) )

n being an integer number called the degree of the map ¥ — S2, induced
by 6, which gives the number of times that S? is covered when one runs
once through ¥ (equal to the number of points in 3 in which 0 takes any
prescribed value).

The comparison of (18) and (19) shows that there is a close formal
similarity between the dual to the Faraday 2-form and the pull-back of
the area 2-form of a sphere S2. It can be expressed in this way. Let an
electromagnetic field be given, such that its form *F is regular except
at the positions of some point charges. Let a map 8 : R — S2 be also
given, which is regular except at some point singularities where its level
curves converge or diverge. It happens then that equations (18) and (19)
are simultaneously satisfied for all the closed surfaces ¥ which do not
intersect any charge or singularity.

This means that the electric charge is topologically quantized inthe
topological model because of the consideration of *F as an area 2-form,
implicit in (9). Furthermore, the fundamental charge is equal to \/a,
and the number of fundamental charges in a volume has the meaning of
a topological index.

It is easy to understand that n = 0 if 6 is regular in the interior of X.
This is because each level curve of 6 (i. e. each electric line) is labeled
by its value along it — a complex number — and, in the regular case,
any one of these lines enters into this interior as many times as it goes
out of it. But assume that 6 has a singularity at point P, from which
the electric lines diverge or to which they converge. If ¥ is a sphere
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around P, we can identify R? except P with ¥ x R, so that the induced
map 6 : ¥ +— S? is regular. In this case, n need not vanish and is
equal to the number of times that 6 takes any prescribed complex value
in 3, with due account to the orientation. Otherwise stated, among the
electric lines diverging from or converging to P, there are |n| whose label
is equal to any prescribed complex number.

This shows why the topological model embodies a topological quanti-
zation of the charge. This mechanism for the quantization of the charge
was first shown in 1991 and developed later in [15].

To understand better this mechanism of discretization, let us take
the case of a Coulomb potential [15, 14], E = Qr/(47r3), B = 0. The
corresponding scalar is then

oot (D)o (1) -

where ¢ and ¥ are the azimuth and the polar angle. The scalar (20) is
well defined only if @ = n+/a, n being an integer. The lines diverging
from the charge are labeled by the corresponding value of 6, so that
there are |n| lines going in or out of the singularity and having any
prescribed complex number as their label. If n = 1, it turns out that
0= (x+iy)/(z+7r).

This mechanism has a very curious aspect: it does not apply to the
source but to the electromagnetic field itself. This is surprising; one
would expect that the topology should operate restricting the fields of
the charged particles. However, in this model, it is the field who mediates
the force the one which is submitted to a topological condition. It must
be emphasized furthermore that the maps S — S2, given by the two
scalars ¢, 0 are regular except for singularities at the position of point
charges, either electrical or magnetic (if the latter do exist). At these
points, the level curves (i. e. the electric lines) converge or diverge.

We see that the topological model predicts that the fundamental
charge has the value gop = 1 ( in natural units) or

qo = \/%7 (21)

(in the MKS system) which is about 3.3 times the electron charge. In the
ISU, this is gp = /hceg = 5.29 x 10719 C. Note that the same discretiza-
tion mechanism would apply to the hypothetical magnetic charges (lo-
cated at singularities of ¢), their fundamental value being also g = Vhe.
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6 Hidden nonlinearity

We have found a structure with two levels. At the deeper one, it is
nonlinear since the scalars ¢ and 6 obey highly nonlinear equations.
However the transformation T : 0 — F, «F given by (9) and (12)

T:0— (F=—-ap*o, *xF =ab"0), (22)

o being the area two-form in S?, changes these nonlinear equation for ¢
and 6 into the linear Maxwell’s ones for F, linearizing thus the theory.
This is important: the Maxwell’s equations are the exact linearization
of a nonlinear and topological theory (by change of variables, not by
truncation!). The theory seems to be linear if one looks to the equa-
tion satisfied by the field F},,, but it cannot be really linear since the
topological quantization of the helicity imposes the nonlinear conditions

hm:/A-Bd3r:na7 he:/C'Ed:Sr:na. (23)

It is clear therefore that one cannot obtain another solution just by mul-
tiplying B and E by a real number (or by adding two different solutions.)

This property was termed hidden nonlinearity in previous work. It
is due to the fact that the transformation 7T is not invertible, since there
are solutions of Maxwell’s equations for which 7~'F is not defined. In
other words, in some cases there are no scalar fields ¢, 6 generating
F, which could be interpreted as maps S% +— S? (as the examples given
before show clearly). As a consequence, although all the electromagnetic
fields of the topological model obey the linear Maxwell’s equations, they
do not span the vector space of all the solutions, but form a nonlinear
subset instead.

Which are the standard electromagnetic fields which must be ex-
cluded from the topological theory because they cannot be generated by
a pair of dual maps? First of all, those with helicities not verifying the
equations (23); also those for which the scalars do exist locally but do
not behave well at infinity or are not of class C' and the Hopf index
can not be defined. Contrary to what it might seem, this is not neces-
sarily a drawback of the model. In fact, it can be said the Maxwell’s
equations have too many solutions, since not all of them can be realized
in nature. Some because their energy, or their momentum, is infinite.
Others are Coulomb or Liener-Wiechert potentials coupled to charges
which are not integer multiples of the electron fundamental value e, or
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they would have been radiated by monopoles (if these particles do not
exist), or have discontinuities in surfaces, meant to represent in a simple
way changes of the field which are abrupt but continuous. Consequently,
that not all the standard solutions are included in the topological model
is not necessarily a bad thing.

7 Conclusion

There is a topological structure below Maxwell’s equation in empty space
or coupled to point charges. A consequence is that they can be obtained
as the linearisation by change of variables of a nonlinear theory based
on two scalars that are constant, along the magnetic and electric force
lines, respectively. In the topological model, the theory is still linear, but
there is some subtle form of nonlinearity, thanks to which the linearity is
compatible with the existence of the topological constants of the motion
equal to the electromagnetic helicity and the electric (and eventually the
magnetic) charge.
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