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PacuumpeHHasi aHHOTALIMS

B xonrme 20-ro Beka cpa3y HECKOJIBKO HcCiemoBaTeneid u3 pasHeix crpan (Bepa Ilnmaanens,
ket Kanpadd, Munxar ["azane, Anekcannp TaTtapeHKo U Jp.) HE3aBUCUMO JPYT OT Jpyra oOpaTuiIH
BHUMaHHME Ha CcCliefayroiiee o000IeHne peKkyppeHTHOro cooTHomeHus dubonauuum: F,(n+2) =
mF,(n+1) + F,(n), xoTOpoe, B CBOIO OuYepe/ib, MPUBOJIUT K CIEAYIOIMEMy OOOOIIEHUIO YpaBHEHUS
30JI0TOM mpornopuuu: x~ — mx — 1 = 0, Tie m — MONIOKUTEIbHOE NeHCTBUTEIBHOE YHCIIO, HA3BAaHHOE
Mpunxatom l'azane «eHOMOHHBIMY YUCIOM WU NOPAOKOBLIM HYUCIOM PEKYPPEHMHO20 COOMHOUIEHUs
Qubonauuu. Bynem Ha3bIBaTh MOJIOKHUTEIBHBIA KOPEHb BBEJACHHOTO BBINIE KBAJIPATHOTO YPAaBHEHUS

Vd+m® +m

0000wennbiM 3010mbim cevenuem nopsioka m ®, =——————. B cBoeil kuure «I'HomoH. OT

dapaonoB 10 ¢dpakranoB» [9], omybmukoBaHHOH B 1999 T. 1 mepeBeneHHON Ha pyccKui 361K B 2002
r., ['a3ane BeIBEN CleayIONIyro 3aMedaTeNbayI0 (opMyITy, KOTOpas 33/1aeT aHATMTHIEeCKH 0000IIeHHbBIE
yucia @udbonayun F,,(n) B nuanasone 3Hauenud n =0, 1, +2, £3, ... :
= (1) D,

\/ 4+m’
Cnemyer OTMETUTh, YTO BbIBeleHHas (opMmyna 3amaeT OECKOHEYHOE KOJUYECTBO HOBBIX
PEKYpPPEHTHBIX TOCIEN0OBATEIbHOCTEH, MOAOOHBIX uyHuciaM @OuOoHAY4YM, TaKk KakK KakIOMYy m

COOTBETCTBYET CBOSI YHCJIOBAs MOCIEA0BATENILHOCTE. HEKOTOphIE U3 HUX MPUBEICHBI B TAOJIUIE HIKE:
O0600mennbie ynciaa Oudonayyu nopsaka m=1, 2, 3, 4

£, (n) =

m D, S5 4 [ 3] 27 4 0 1 2 3 4 5
U [ 1445 | 3 3 2 [ 4 1 0 1 1 2 3 5
2
442 | 29 | 12 5 | =2 1 0 1 2 5 | 12 ] 29
3 3443|109 ]33 10 3 1 0 1 3 | 10 | 33 [ 109
2
4 [ o4y | 305 12 17 | 4 1 0 1 4 | 17 | 72 | 305

3aMeTuM, 4TO BTOPOH psan dTol Tabmuisl (m=1) 3anaer knaccuueckue yucia GuboHau4ym, B TO BpeMs
Kak TpeTuil psia (m=2) 3amaeT eme OJUH 3aMevaTeNIbHbIA YHCIOBOW PsiJl, M3BECTHBIN T0J] Ha3BaHHUEM
yucnaa Ilennu.

Orta Qopmyna mo mpaBy MOXKET OBITh OTHECEHa K pPa3psdy BBIJAIOMIMXCS MaTeMaTHYECKUX
dopmyn Hapsgy c dopmymamu Oiinepa, dopmynamu Myaspa, dopmynamu bune u T.1. ABTOp
HACTOSIIIEN CTAaThU TpejIaraeT Ha3BaTh 3Ty hopMyiny gopmyaou I azane.
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Nmenno opmyna ['azane BIOXHOBHWJIA aBTOpa Ha TOJYYCHHE CIEAYIOMUX HOBBIX

MaTeMaTUYECKUX Pe3yTbTaTOB:
(1) BeiBenena craenyromas opmyra:
L (n)=0) +(-1)"D,".
Ota Gopmyity aBTOp HasBan ¢opmynou I azane o 0606wennvix uucen Jloxka nopsoxa m, NOCKOIbKY
ABTOp BBIMOJIHWJ JIMIIb TEXHHUYECKYIO pabOTy MpHU BBIBOAC NaHHOW (opmysa. 3aMeTHUM, 4YTO dTa
dopmyna 3amaeT OECKOHEYHOE KOJIMYECTBO HOBBIX PEKYPPEHTHBIX TOCIEIOBATEILHOCTEH, YaCTHBIMU
CIIly4assMA KOTODPBIX SIBIISIIOTCS Kiaccuueckue uwucna Jlioka (m=1) u uucna Iennu-Jloka (m=2).
HexoTopblie U3 3TUX YUCIOBBIX MMOCIIEA0BATEIBHOCTEH MPUBEICHBI B TAOIHUIIE HUXKE:
O06o0mennbie unciaa Jloka nopsaka m=1, 2, 3, 4

m D, -5 -4 -3 -2 -1 0 1 2 3 4 5

1 1+4/5 -11 7 -4 3 -1 2 1 3 4 7 11
2

1+42 -82 34 -14 6 -2 2 2 6 14 34 82

3 34413 | 393 | 119 | -36 11 -3 2 3 11 36 119 | 393

2
4 24+4/5 |-1364| 322 -76 18 -4 2 4 18 76 322 | 1364

(2) CregyrommM HaydHBIM PE3YyJbTAaTOM SIBIISETCS BBEIACHHE HOBOTO Kiacca TUMEPOOTUYECKHX
¢bynkunii dudbonayun u Jlroka, ocHoBaHHBIX Ha Gopmyiax ['azane:
l'unep6onuyeckuit cunyc @uboHAYYH MOPSAKA m

a1 miNasm’ ) (meaem’ )
! \/4+m2 \/4+m2 2 2

l'unepOonnyeckuii Koc:I/IHVC duboHau4y MopsaKa m .

cF(x):ch”+cD;’X: 1 erx/mer m+m -
! \/4+m2 \/4+m2 2 2

T'unepboanyeckuii cunyc JIroka nopsijaka m

m+~a4+m’ x_ m+\4+~d+m’ b

2 2

sL,(x)=®, —D, " =

I'nnepbonmuecknii Kocuayc JIroka mopsiaka m

m+~N4+m’ x+ m+4+4d+m’ 7

2 2

cL, (x)=®, +D,° =

3ameTuM, 4YTO OTH ruUNepOoiInuecKkue (QyHKIUU  SBISIOTCA  OOOOIICHUEM  CUMMEMPUYHBIX
eunepoonuueckux ¢yukyui ubonavuu u Jlroxa, BBeneHHbIMU CTaxoBsiM U Po3unbim B 2005 1. [14].
TpymHO BOOOPA3UTH, 9TO KOJUIECTBO HOBBIX THIIEpOOINIecKuX GyHKnid dubonauyn u Jlroka
0ECKOHEYHO, TaK KaK KaxaoMy m (m — MOJ0KHUTEIbHOE IEHCTBUTEIFHOE YHCI0) COOTBETCTBYET CBOU
BapuaHT runepoonnyeckux Gpyukmmii. HoBbeIi kitace rumepbonmdecknx GyHKIIUN MPEACTABIACT COOO0M
(byHIaMEHTaIbHBIM WHTEpEC IS TUIIEPOOTHMUECKOW TE€OMETPHH U TEOPETHUECKONW (DM3HKU U MOMKET
NPUBECTU K IEPEOCMBICIMBAHUIO «rUIepOosinyeckoi reomerpun JIo0aueBCKOro» M «IpOCTPAaHCTBA
MunkoBckoro»  (runepOoNMuecKod HMHTEpIpEeTalii  CHEUATbHOW TEOPUH  OTHOCHUTEITHLHOCTH




DOUHIITEHHA).
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1 o) UCCIIEIOBAHHOM aMEpPUKAaHCKUM MaTeMaTUKOM BepHepom

Xorrartom, cosgateneM @PuOoHauydyM-Accouuanuy, B HacTosiied padoTe BBEACHO NOHATHE (-

m 1
marpuusl G, = Nt KOTOpasi SIBJISETCS TMOPOXKAAIOIIEH MaTpuied s 0O0OOIIEHHBIX YHCes
dubonayun nopsiaka m. JlokazaHo cieayromniee € CBOUCTBO (J,,-MaTPHIIbI:

o - Fm(n+1) Fm(n)
m Fm (n) Fm (n—1)

(3) B pasBurue Q-marunsr Q :(

(4) B pabore [26] aBTOpOoM BBEIEH HOBBI KJIacC KBaJpaTHBIX MATPHUIl, OCHOBAHHBIX Ha
WCITOJIb30BAaHUM CUMMETPHUYHBIX rumnepbommuecknx (Qynkiuii @ubdonayun (Craxos, Posun, 2005).
HccnenoBanuu (,-MaTpuI] IPUBEIO K OTKPBHITHIO HOBOTO KJIacca KBAJIPaTHBIX MaTpPHUI], OCHOBAHHBIX
Ha UCIOJIb30BaHNH runiepOommuecknx GyHkmnii @uboHavy4u mopsaka m:

2x _(cF,(2x+1)  sF,(2x) G2x+1_ sFE,(2x+2) cF,(2x+1)

m sF,(2x)  cF,(2x-1) m cF (2x+1)  sF, (2x)

(5) B paGote [26] aBTOpOM BBEJCH HOBBIM KpUNTOTpadUUSCKU METOJI, OCHOBAaHHBIM Ha
WCTIOJIB30BAaHUH «30JIOTHIX» MATPHUIl U Ha3BaHHBIN «30JI0TOI» Kpuntorpadueil. B Hacrosmielr pabote
MPENJIOKEH  YCOBEPUICHCTBOBAHHBIA ~ METOJ «30JI0TOM»  KpunTorpaduu, OCHOBAaHHBIA Ha
WCIIOJIB30BaHUM  rumiepbonmdecknx Gyakmmii duOoHayum mopsiaka m. HOBBIM  CBOWCTBOM
YCOBEPILIEHCTBOBAHHOI'O METO/A SIBJISIETCSA HAJIMYUE BYX HENPEPBIBHBIX MIEPEMEHHBIX X U M, KOTOPBIE
MOTYT OBITh UCTIOJIB30BAHBI B KAUECTBE «KPUINITOTPAPHUECKUX KITFOUEI», UTO pACIIUPSIET BOSMOKHOCTH
KpUNITOTpadUIeCKOM 3aITUTHI.

Taxum o6pa3zom, popmyssl ['a3ane 1 BhITEKAIONINE U3 HUX HOBbIE MaTeMaTHYECKUE PE3yIbTaThl
B obOnactu runepOonuyeckux ¢GyHkimid dudonayun u Jlroka ¥ «30J0THIX» MaTpPHII, MMOJTyYEHHBIC B
HacTosied paboTe, OTKPBIBAIOT MHTEPECHBIE MEPCIEKTUBBI JJIS CO3JJaHHUsI HOBBIX T'MIIEPOOIMUYECKUX
monenerr [lpuponsr (Teopermueckas (u3vka) W HOBBIX METOJOB KOIAMPOBAHHUS W KPHUIITOTpAPUH
(KOMIIBIOTEPHBIEC HAYKH).

Abstract
We consider the Gazale formulas, which are a wide generalization of the Binet and Pell formulas, and a
new class of the “golden” hyperbolic functions, which a wide generalization of the symmetric
hyperbolic Fibonacci and Lucas functions (Stakhov and Rozin, 2005). Also we consider a new class of
the “golden” matrices being a wide generalization of the “golden” matrices (Stakhov, 2006). The
improved cryptographic method, which is a generalization of Stakhov’s “golden” cryptographic
method, follows from the new “golden” matrices.

1. Introduction
The present paper is devoted to the generalization and development of a number of fundamental
results of the contemporary Fibonacci numbers theory [1-28]. And we will begin from the review of
these fundamental notions and concepts.

Fibonacci and Lucas numbers

Consider the following recursive relation
F(n)=F(n-1) + F(n-2) (1)



where n = 0, 1, +2, 43, ... . For the seeds
F0)=0,F(1)=1 ()
the recursive relation (1) sets the classical Fibonacci sequence expanded to the side of the negative
values of n:
..-21,13,-8, 5,-3,2,-1,1,0,1,1,2,3,5,8, 13, 21, ... 3)
This sequence is symmetric relative to the number 0, if we take into consideration that every even term
of the sequence (3) from the left of the number 0 is negative.
Also we can consider the recursive relation
L(n)=L(n-1) + L(n-2) 4)
For the seeds
L(0)=2,L(1)=1, (5)
the recursive relation (4) sets the classical Lucas sequence expanded to the side of the negative values
of n:
..47,-29,18, -11,7,-4,3,-1,2,1,3,4,7, 11, 18, 29, 47, ... (6)
This sequence is symmetric relative to the number 2, if we take into consideration that every odd term
of the sequence (6) from the left of the number 2 is negative.

! Academician of the International Higher Education Academy of Sciences
Binet formulas

As is known, the recursive relation (1) can be represented in the form:
F(n) 1

=l+— 7
F(n-1) F(n-1) @
F(n-2)
For the case n — oo the expression (7) is reduced to the following quadratic equation:
X¥-x-1=0 (8)
The equation (8) has two roots:
x1=®1=1+\/§ and )C2=_L :ﬁ, (9)
2 D, 2
They are connected by the following correlation:
x1tx=1 (10)
The following equality follows from (10):
1
O -—=1 11
s (1)
The roots (9) are the “launching pad” for the derivation of Binet formulas for Fibonacci and Lucas
numbers:
ae)
F(n)=———1 12
(1) NG (12)
1 n
L(n)=®] +| —— 13
1(n) = @ ( @J (13)

The formulas (12), (13) were derived by Binet in 1843, although the result was known to Euler, Daniel
Bernoulli, and de Moivre more than a century earlier. In particular, de Moivre derived these formulas
in 1718.
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O-matrix

Verner Hoggatt developed in [3] a theory of Fibonacci Q-matrix:

11
which is connected with the Fibonacci numbers (3) by the following formula:
0" - Fn+1) F(n) (15)
F(n) Fm-1

It is proved in [3] that the determinant of the matrix (15) coincides with the famous Cassini
formula
Det Q" =F(n+1)F(n—1)—F*(n)=(-1)"
that was named in honor of the well-known 17-th century astronomer Giovanni Cassini (1625-1712)
who first derived this formula.
Recently in the works of Alexey Stakhov and Boris Rozin the classical results in the Fibonacci
numbers theory were generalized [11-28]. Consider some of these generalizations.

Hyperbolic Fibonacci and Lucas functions
Stakhov and Rozin introduced in [14] the so-called symmetric hyperbolic Fibonacci and Lucas

functions
Symmetric hyperbolic Fibonacci functions

A o+ O
sFs(x) = CDITI cFs(x) = QTI (16)
Symmetric hyperbolic Lucas functions
sLs(x) = @ - O cLs(x) = @ + O 17)

The Fibonacci and Lucas numbers (3), (6) are determined identically through the symmetric
hyperbolic Fibonacci and Lucas functions (16), (17) as follows:

sFs(n), for n=2k cLs(n), for n=2k
F(n) = ; L(n) = : (18)
cFs(n), for n=2k+1 sLs(n), for n=2k+1
The “golden” Q-matrices and the “golden’ cryptography
Stakhov developed in [26] a new class of the square matrices called “golden” matrices:
2x _[cFs2x+1)  sFs(2x) en [ SFs(2x+2) cFs(2x+1) (19)
| sFs2x)  cFs(2x-1) cFs(2x+1)  sFs(2x)

These matrices were used by Stakhov for the development of a new kind of cryptography called the
“golden” cryptography [26].
The generalized Fibonacci numbers of the order m

In the last years many researchers (Vera W. de Spinadel [8], Jay Kappraftf [9], Midhat J. Gazale

[10] and others) independently one from another introduced the generalized Fibonacci numbers based
on the following recursive relation:

Fn(n+2)=mF,(n+1) + F,(n) (20)
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Fu(0)=0, Fu(1) =1 21
where m is a positive real number.
The Egyptian mathematician Midhat J. Gazale in his remarkable book [10] called new recursive
sequences based on (20), (21) the generalized Fibonacci sequence of the order m.
As example we can see in Table 1 the different Fibonacci sequences F,,(n) of the orders m=1, 2,

L for the values » from -4 to 5.
V2

Table 1. The Fibonacci sequences Fr,(n)

m/n -4 -3 -2 -1 0 1 2 3 4 5

1 -3 2 -1 1 0 1 1 2 3 5

-12 5 -2 1 0 1 5 12 29

2 2
U2 | -50242) | 32 W2y -l 0 L a2 | 32 [s5i042) | 11/4

We can see from Table 1 that for the case m=1 the Fibonacci sequence F(n) coincides with the
classical Fibonacci numbers (3) and for the case m=2 the Fibonacci sequence F»(n) coincides with the
Pell numbers.

The main purpose of the present paper is to use the recursive relation (20), (21) for the
generalization and development of all the above mathematical results (1)-(21). In particular, basing on
(20), (21), we have derived the so-called Gazale formulas, then, basing on Gazale formulas, we have
introduced a new class of the hyperbolic Fibonacci and Lucas functions, which are a generalization of
(16), (17). Also basing on new hyperbolic Fibonacci and Lucas functions, we have developed the
improved method of the “golden” cryptography.

2. Gazale formulas

Represent the recursive relation (1) in the form:
F(n+2) 1

=m+—— 22
Fovn " F@AD 22
F(n)
For the case n — oo the expression (22) is reduced to the following quadratic equation:
X—mx—-1=0 (23)
The equation (23) has two roots, a positive root
2
x1=\/4+m +m (24)
2
and a negative root
_ 2
¥, = \/4+2m +m (25)
If we sum term-wise the roots (24) and (25) we will get:
X1 tx=m (26)
If we substitute the roots (24), (25) into Eq. (23) instead x, we will get the following identities:
x; =mx, +1 X))
x; =mx, +1 (28)

If we multiply or divide repeatedly all terms of the identities (27) and (28) by x; and x», respectively,
we will get the following identities:

X! =mx! "+, (29)
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Xy =mxs "+ (30)
where n=0, £1, +2, 43, ... .
Gazale denoted the positive root x; by ®@,, and named it a “start point number” and the number
m a “gnomonic number” of the number ®,,. A sense of such definition becomes clear below.
The “start point number” ®,, has the following analytical expression:

2
m:\/4+m +m 31)
2

Let us express now the root x, through the “start point number” ®,,. After simple transformation

of (25) we can write the root x; as follows:

— 2 f—

¥, = V4+m +m _ 4 =_L (32)
2 2(\/ 4+m* +m) D,

Substituting @,, instead x; and — cI)L instead x; in (26) we will get the following identity:

m

1
S 33
m=®, - (33)

m

where @, is given by (31) and CDL is given by the formula:

1 Nd+m® —m
o, 2 4

m

Notice that for the case m=1 the formula (31) is reduced to the classical golden ratio

1+\/§
2

ratio of the order m.
Write the obvious property of the generalized golden ratio of the order m:

@, +®L=\/4+m2 (3%)

m

D, = . Basing on this fact we will name Gazale’s “start point number” ®,, a generalized golden

Using the identity (29) we can write the following identity for the number @,,:
O =md" + D7, (36)
where n=0, +1, +2, 43, ... .

Two surprising representations of the generalized golden ratio ®,,

For the case n=2 the identity (36) can be represented in the form:

O =1+md, (37)
Basing on (37) we can write the following representation of the generalized golden ratio @,
D, =1+md, (38)

Substituting instead ®,, in the right-hand part of (38) the same expression (38) we can write:

O, =4/1+m1+D, (39)

Continuing this process ad infinitum, that is, substituting repeatedly instead ®,, in the right-hand part of
(39) the expression (38), we can get the following surprising representation of the generalized golden
ratio @,,:



o, :\/1+m\/l+m\/1+m\/T (40)

Represent now the identity (37) in the form:

1
O =m+— 41
- o (41)
Substituting instead ®,, in the right-hand part of (41) the same expression (41) we can write:
O, =m+ ! I (42)
m+—

m

Continuing this process ad infinitum, that is, substituting repeatedly instead ®,, in the right-hand part of
(42) the expression (41), we can get the following surprising representation of the generalized golden
ratio @,

O =m+ (43)

A derivation of Gazale formula

In the formulas (20), (21) the numbers F,,(n) are defined by recursion. We can express the
numbers F,(n) in explicit form by using the generalized golden ratio @,,.
We will look for the analytical expression of the generalized Fibonacci number F,,(n) through
the roots x; and x; in the form:
F (n)=kx/+kx, (44)
where k; and k&, are constant coefficients, which are solutions of the following system of algebraic
equation:

F . (0)= klxlo + kzxg =k +k,
Fm (1) = klxll + kzx; = qu)m — k2 CD% (45)

Taking into consideration that F,,(0)=0 and F,,(1)=1 we can rewrite the system (45) as follows:
ky=-ky (46)
and

1 1
qu)m'f-klg:kl(q)m'f-gj:l (47)

m m

Taking into consideration (46) and (47), we can find the following expressions for the coefficients k;
and ka:

1 1
ky=—F—; k,=——F—— (48)
1 N4 +m’ ’ N4 +m’

Taking into consideration the expressions (48) we can write the expression (44) as follows:

1 1 1
F (n)= X — X, = X —Xx 49
() = ]~ (3 - x7) (49)

\/4+m




Taking into consideration that x; = ®,, and x, = _CDL , we can rewrite the formula (49) as follows:

m

@~ (-1/D,)"

F = 50
S === (50)
or
F.(n)= 1 m+~N4+m’ 3 m—~4+m’ (s1)
Va+m? 2 2

For the partial case m=1 the formula (51) is reduced to the Binet formula (12).
For the case m=2 the formula (50) takes the following form:

Fz(n):ﬁ[(l+ﬁy—(l—ﬁy} (52)

Notice that for the first time this formula was derived by the English mathematician John Pell (1610-
1685).

For the case m=3 and m=+/2 the formula (51) takes the following forms, respectively:

1 3+\/B” 3—\/Bn
Fa(n>=m[( : ]—( . ]] (53)

1 [(&@Hﬁﬁu -

Fat =T 2

Thus, the Egyptian mathematician Midhat J. Gazale has derived recently the unique
mathematical formula (51), which includes as partial cases Binet formula for Fibonacci numbers (12)
for the case m=1 and Pell formula (52) for the case m=2. However, this formula generates an infinite
number of the generalized Fibonacci numbers of the order m because m is positive real number. Due
uniqueness of the formula (51) we will name this formula Gazale formula for the generalized
Fibonacci numbers of the order m or simply Gazale formula.

3. The generalized Fibonacci and Lucas numbers of the order m
The generalized Fibonacci numbers of the order m

Let us prove that Gazale formulas (51)-(54) really expresses all generalized Fibonacci numbers
of the order m given by the recursive formula (20) at the seeds (21). In fact, for the case n=0 it follows
directly from the formula (51) that F,,(0)=0. For the case n=1 we can write the formula (51) as follows:

1 m+\/4+m2_m—\/4+m2 1
\/4+m2 2 2 '

This means that the formula (51) corresponds to the seeds (21).
Suppose that the formula (49) is valid for a given n (the inductive hypothesis) and prove that
this formula is valid for the case n+1, that is,

F (n+1)=

F,()=

n+l _ _n+l

1
m(xl 2 )

Using the identities (24) and (25) we can represent the formula (55) as follows:

(35)
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m n n 1 n—1 n—1
m(xl —X2)+m(xl — X, ): mFm(n)+Fm(n—1) (56)

Thus, the formula (56), in fact, sets the generalized Fibonacci numbers of the order m given by
the recursive relation (20), (21).

Notice that the formula (51) sets all generalized Fibonacci numbers F,(n) in the range n=0, %1,
12,43, ... . Let us find some surprising properties of the generalized Fibonacci numbers of the order m.
First of all we can compare the generalized Fibonacci numbers F,,(n) and F,,(-n). We can write the
formula (51) as follows:

F (n+1)=

Fm(l’l) — CI)m _(_1) CDm (57)
\/ 4+m?
Represent now the formula (57) for the negative values of n, that is,
F(ony=2u - DO, (58)
Va +m?

Comparing the expression (57) and (58) for the even (n=2k) and odd (n=2k+1) values of n, we can
conclude that

Fu(2k) = -Fy(-2k) and F,,(2k+1) = F,u(-2k-1). (59)
This means that the sequences of the generalized Fibonacci numbers of the order m in the range n=0,
+1, £2, £3, ... is a symmetric sequence relative to the generalized Fibonacci number F,,(0) = 0

excepting that the generalized Fibonacci numbers F,,(2k) and F,,(-2k) are opposite by sign.
In Table 2 we can see the generalized Fibonacci numbers with the orders m=1, 2, 3, 4

Table 2. The generalized Fibonacci sequences with the orders m=1, 2, 3, 4

m D, S [ 43271170 1 2 3 4 5
U [ 145 | 5 | 3] 2| 1 1 0 1 1 2 3 5
2
442 | 29 [ 12 ] s [ 2] 1 0 1 2 5 | 12 [ 29
3 (34413 | 109 [ 33 [ 10 | 3 | 1 0 1 3 [ 10 [ 33 | 109
2
4 | o453 1305 | -2 17 | 4| 1 0 1 4 |17 | 72 | 305

Notice that for the case m=2 the Gazele formula (57) generates a numerical sequence known as Pell
numbers.

Let us find the fundamental formula, which connects the three adjacent generalized Fibonacci
numbers with the order m. For the case m=1 this formula is known as Cassini formula. We can
represent this formula for the classical Fibonacci numbers Fj(n) as follows:

F'(n) = F(n-DF(n+1)=(-)"" (60)
It is easy to prove the following general identity for the generalized Fibonacci numbers of the order m:
F,(n)=F,(n=1F,(n+1)=(-)"" (61)

For example, for the case m=2 the Fibonacci numbers F»(-5)=29, F»(-4)=-12 and F,(-3)=5 are
connected by the following correlation: (-12)* - 29x5= -1, and for the case m=3 the Fibonacci numbers
F3(4)=33, F5(3)=10 and F5(3)=3 are connected by the following correlation: (10)* - 33x3 = 1.

The generalized Lucas numbers of the order m

Consider once again the formula (44) given the generalized Fibonacci numbers of the order m.
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By analogy to the classical Lucas numbers we can consider the formula

L,(n)=x +x, (62)
It is clear that for the case m=1 this formula sets the classical Lucas numbers (6). We will assume that
the formula (62) sets the generalized Lucas numbers of the order m. For a given m we can find some
peculiarities of the generalized Lucas numbers of the order m. First of all we can calculate the seeds of
the generalized Lucas numbers of the order m. In fact, for the case n=0 and n=1 we have respectively:

L,(0)=x+x)=1+1=2; (63)
L ()=x+xy=m (64)

Using the identities (29) and (30) we can represent the formula (62) as follows:
L (n)=x'+x)=mx" +x)7 +mx] > +x)7 = m(x{"1 +x5! )+ (x{’"2 + x;’"z) (65)

Taking into consideration the definition (62) we can write (65) in the form of the following recursive
relation:
L (ny=mL (n-1)+L,(n—-2) (66)
It is clear that the recursive relation (66) at the seeds (63), (64) sets the generalized Lucas
numbers of the order m.
If we substitute in the formula (62) instead x; and x, their expressions through the generalized

golden ratio of the order m x; = ®,, and x, = _CD% we can represent the formula (62) as follows:

n -1 '
o7+ ((D_m] ] (67)

Although this formula is absent in the book [9] we will name this important formula Gazale formula
for the generalized Lucas numbers of the order m.
We can rewrite the formula (67) as follows:

L,(n)=

L,(n)=@, +(-D)"®,’ (68)
Represent now the formula (68) for the negative values of n, that is,
L,(-n)=@," +(-1)"@, (69)

Comparing the expression (68) and (69) for the even (n=2k) and odd (n=2k+1) values of n, we
can conclude that

L,(2k) = L, (-2k) and L,,(2k+1) = - F,,(-2k-1). (70)
This means that the sequences of the generalized Lucas numbers of the order m in the range n=0, £1,
+2, 43, ... is a symmetrical sequence relative to the generalized Lucas number L,,(0) = 2 excepting that

the generalized Lucas numbers L,,(2k+1) and L,,(-2k-1) are opposite by sign.
In Table 3 we can see the generalized Lucas numbers with the orders m=1, 2, 3, 4.

Table 3. The generalized Lucas sequences with the orders m=1, 2, 3, 4

m D, S5 [ 4] 3] 2711710 1 2 3 4 5
U [ qeys | -0 [ 7 [ 4 3 [ 1] 2 1 3 4 7 | 11
2
1442 | 82 ] 34 [ 14 6 | 2 | 2 2 6 | 14 | 34 | 82
3 (3043|393 119 [ 36 | 11 | 3 2 3 | 11 | 36 | 119 | 393
2
4 | 945 |-1364| 322 | 76 | 18 | 4 | 2 4 | 18 | 76 | 322 | 1364
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Notice that for the case m=2 the Gazele formula (69) generates a numerical sequence known as Pell-
Lucas numbers.

4. A new class of the “golden” hyperbolic functions
A definition of the hyperbolic Fibonacci and Lucas functions of the order m

Stakhov and Rozin introduced in [14] a new class of the hyperbolic functions, the symmetric
hyperbolic Fibonacci and Lucas functions, basing on an analogy between Binet formulas (12), (13) and
the classical hyperbolic functions. We can use this approach to introduce the hyperbolic Fibonacci and
Lucas functions of the order m basing on an analogy between Gazele formulas given by (57) and (68)
and the classical hyperbolic functions.

Hyperbolic Fibonacci sine of the order m

oF (x)_d)';—CD;f B 1 m+~N4+m’ 3 m+~4+m’ _ 1)
" \/4 +m’ \/4 +m’ 2 2
Hyperbolic Fibonagci cosine of the order m i
O+ D" 1 miNd+m® ) (m+a+m® )
cF, (x) = n = + (72)
\/4 +m \/4 +m 2 2
Hyperbolic Lucas sine of the order m
e | mAAw? m+\4+~4+m
SL,(x) =@}, ~ D, = . - 5 (73)
Hyperbolic Lucas cosine of the order m
2 x 2 -
ch(x)ch;+q);x:(m+\/;l+m } N m+\/4+2\/4+m (74)

The generalized Fibonacci and Lucas numbers of the order m are determined identically
through the hyperbolic Fibonacci and Lucas functions of the order m as follows:

Fn) = {sFm(n), for n=2%k L) = {ch(n), for n=2%k

; . 75
" CF,(n), for n=2k+1 L), for ne2k+1 )

The graphs of the hyperbolic Fibonacci and Lucas functions of the order m are similar to the
graphs of the classical hyperbolic functions. Here is necessity to notice that in the point x=0, the

hyperbolic Fibonacci cosine cF,,(x) (72) takes the valuecF, (0) = %, and the hyperbolic Lucas
44 m

cosine cL,(x) (74) takes the value cL,(0) = 2. It is also important to emphasize that the generalized
Fibonacci numbers F,,(n) with the even values of n = 0, £2, 4, £6, ... are “inscribed” into the graph of
the hyperbolic Fibonacci sine sF,(x) in the discrete points x = 0, £2, +4, +6, ... and the generalized
Fibonacci numbers F,,(n) with the odd values of n = +1, £3, 5, ... are “inscribed” into the hyperbolic
Fibonacci cosine cF,(x) in the discrete points x = £1, £3, £5 .... In the other hand, the generalized
Lucas numbers L,,(n) with the even values of n are “inscribed" into the graph of the hyperbolic Lucas
cosine cL,(x) in the discrete points x = 0, £2, +4, 6 ..., and the generalized Lucas numbers L,,(n) with
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the odd values of n are “inscribed” into the graph of the hyperbolic Lucas sine sL,(x) in the discrete
points x = £1, 3, £5 ...

Also we can introduce the notions of the hyperbolic Fibonacci and Lucas tangents and
cotangents of the order m.

Hyperbolic Fibonacci tangent of the order m

sE,(x) _ @, =@,

tF, (x)= =" -
ck (x) @, +D,

(76)

Hyperbolic Fibonacci cotangent of the order m

cF,(x) @, +dF

ctF (x) = a
sk, (x) @, -0.°

(77)

Hyperbolic Lucas tangent of the order m

sL,(x) _ @, -®,

th(x) = - X —x
cL,(x) @+,

(78)

Hyperbolic Lucas cotangent of the order m

cL,(x) @+
sL,(x) @, -®@]

ctL,(x)= (79)

By analogy we can introduce other hyperbolic Fibonacci and Lucas functions of the order m, in
particular, secant and cosecant and so on.

Properties of the hyperbolic Fibonacci and Lucas functions of the order m

It easy to prove that the function (71) is an odd function because

F (—x) = 2w = P _ Py oy (80)
\/44—m2 \/4+m2
On the other hand,
F(—x) = Pu * O _ L, 40 _ py (81)
\/4+m2 \/4+m2

that is, the hyperbolic Fibonacci cosine (72) is an even function.

By analogy we can prove that the hyperbolic Lucas sine of the order m (73) is an odd function
and the hyperbolic Lucas cosine of the order m (74) is an even function.

Making the pair-wise comparison of the functions (76) and (78), (77) and (79) we can conclude
that the functions of the hyperbolic Fibonacci and Lucas tangents and cotangents of the order m are
coincident, that is, we have:

tFy (x) =tLy (x) and ctF,, (x) = ctLy(x). (82)

It is easy to prove that the functions (76), (77) are the odd functions because

O —P*
tF, (—x)=—"—"=

=—tF (x
O+ n (%)
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O +D;
ctF, (—x) = ﬁ =—ctF (x)
Taking into consideration (82) we can write:
tL, (=x)=—tL, (x)
ctL, (—x)=—ctL, (x)
that is, the functions (78), (79) are the odd functions too.

Thus, we have introduced above very interesting class of the hyperbolic functions, which are a
wide generalization of the symmetric hyperbolic Fibonacci and Lucas functions (16), (17), which are a
partial case of the above hyperbolic functions given by (71)-(74) for the case m=1. Let us consider the
analytical expressions of the hyperbolic Fibonacci and Lucas functions (71)-(74) for the different
values of the order m.

Hyperbolic Fibonacci and Lucas functions of the order m=1

SFI(X)_%_%[ 1+2\/§Jx (1+2\/§H .
sL(x) =@~ = (1 +2*/§Jx - (1 +2*/§j_x (85)
esL,(x) = O — O = (1 +2*/§]x + (1 ?EJ_X (86)

Hyperbolic Fibonacci and Lucas functions of the order m=2

SFy(x) = q);:/gq)zx - 2\1/5[(1+ V2f ~(1++2)" | (87)
eFy(x) = cpgj/gq)zx - 2\15[(1 2] + 2] (88)
SL(x0) =@ — 0y = (14++2) —(1++2) (89)
cLy(x) = @ + 07 =[1++2) +(1++2)" (90)

Hyperbolic Fibonacci and Lucas functions of the order m=3

Coi-oy 1 |[(3+413 T (34413

sFy(x) = \/E _\/E( 5 ] ( > j 1)
Oy +D 1 | 3+413) (34413 o

cF(x) = NE _\/ﬁ( 5 ] +( > j 92)
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SLy(x) = D} — ;" = 3+413) (34413 (93)
2 2
()=t p <[ 3EVIB] (34413 (94)
2 2
Notice that a list of these functions can be continued ad infinitum.
It is easy to see that the functions (71)-(74) are connected by very simple correlation:
sF. (x) sL,(x) cF (x) = cL,(®) ) (95)

Vad+m’ ; Va4 +m®

This means that the hyperbolic Lucas functions of the order m (73), (74) coincide with the hyperbolic

1
V1+m®
consideration this fact we will consider in further only the hyperbolic Fibonacci functions of the order
m.

Fibonacci functions of the order (71), (72) to within of the constant coefficient

. Taking into

We can prove a number of the important theorem for the hyperbolic Fibonacci and Lucas
functions of the order m.

The hyperbolic Fibonacci and Lucas functions of the order m possess the recursive properties
similar to the generalized Fibonacci and Lucas numbers of the order m given by the recursive relations
(20) and (66). On the other hand, they possess all hyperbolic properties similar to the properties of the
classical hyperbolic functions. Prove the recursive and hyperbolic properties of the hyperbolic
Fibonacci and Lucas functions of the order m.

Theorem 1. The following correlations that are analogous to the recurrent relation for the
generalized Fibonacci numbers F,(n+2) = mF,(n+1) + F,(n) are valid for the hyperbolic Fibonacci
functions of the order m:

SFy (x+2) = mcF,, (x+1) + sF,, (x) (96)
cFu(x+2) = msF,(x+1) + cFu(x) . 97
Proof:

x+1 —x-1 x —x X _ X1 _ -1
O, +D, n OME OXN _ O (m®,+1)-D " (1-md,) (98)
Va+m? Va4 +m? Va+m?

mcFu(x+1) + sF(x) = m

Because m®, +1=®’ and 1-®,' = ®,* we can represent (98) as follows:

x+2 —x-2
q)m _CDm

Va4 +m’

mcFy(x+1) + sF,(x) = =sF (x+2)

that proves the identity (96).
By analogy we can prove the identity (97).

Theorem 2 (a generalization of Cassini formula). The following correlations that are similar
to the Cassini formula F.(n)—F,(n—1)F, (n+1)=(=1)""" are valid for the hyperbolic Fibonacci
functions of the order m:
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[sFs(x)]* - cFs(x+1) cFs(x-1) = -1 (99)
[cFs(x)]* - sFs(x+1) sFs(x-1) = 1. (100)

Proof:

2
q)x _cD—x cDx+l cD—x—l q)x—l q)—x+l
[SFm(x)]2 _ CFm(X+1) CFm(X—l) :( m ] _ m + m X m + m =

\/4+m2 \/4+m2 \/4+m2

D -2+D 7 — (O + D2+ D+ D) —2- (@2 + D)
— m m m 5 m m m — m . m (101)
4+m 4+m

Using the formula (68) for the case n=2 we can write:

L,(2)=02 +®,° (102)
Using the recursive formula (66) and the seeds (63), (64) we can represent the generalized Lucas
number L,,(2) as follows:

L,(2y=mL,()+L,(0)=mxm+2=m’+2 (103)
Taking into consideration (103) we can conclude from (101) that the identity (99) is valid.
By analogy we can prove the identity (100).
Theorem 3. The following identity similar to the identity for the classical hyperbolic functions
[ch(x)])* — [sh(x)]* = 1 is valid for the hyperbolic Fibonacci functions of the order m:
4

[ecFu()T - [sFu(0)]’ = ya— (104)
Proof:
@X @—x 2 @x @7}6 2
[CFm(x)]2 - [SFm(x)]2 :( m + m ] _ [ m__ m ) —
\/4+m2 \/4+m2
_ D240 -0 +2-D ) 4
4+m’ 4+m’
2

i T+ 2 ~ u B z_zx + 2 4 2_72): _ 1_2); L 2 szx - i
V5 S5 5 ;

By analogy we can prove the following theorem for the hyperbolic Lucas functions of the order
m.

Theorem 4. The following identity similar to the identity for the classical hyperbolic functions
[ch(x)]* — [sh(x)]* = 1 is valid for the hyperbolic Lucas functions of the order m:

[cLs(x)]* - [sLs(x)]* =4 (105)
Theorem is proved by analogy to Theorem 3.
Theorem 5. The following identity similar to the identity for the classical hyperbolic functions
ch(x+y) = ch(x)ch(y) + sh(x)sh(y) is valid for the hyperbolic Fibonacci functions of the order m:

%cFm(ery) = cFp(xX)cFu(y) + sFu(x)sFu(y) . (106)
+m

Proof:
CFu(X)cFy(y) + sFu(x)sFu(y) =
O +DdF D +DT D -DF D -]
= X + X =
Va+m®  Na+m®  Na+m® Na+m?
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DO+ T+ D T+ O D D Y+ D

B 4 +m? -
2o iay) 2

\/4+m2 ><\/4+m2 \/4+m

Theorem 6. The following identity similar to the identity for the classical hyperbolic functions
ch(x-y)=ch(x)ch(y) - sh(x)sh(y) is valid for the hyperbolic Fibonacci functions of the order m:

%cFm(x—y) = CFu(xX)cFp(y) — SFEm(X)sFEm(y) . (107)

4+m
Theorem is proved by analogy to Theorem 5.
By analogy we can prove the following theorems for the hyperbolic Fibonacci and Lucas
functions of the order m.
Theorem 7. The following identities similar to the identity for the classical hyperbolic
functions ch(2x) = [ch(x)]* + [sh(x)]* are valid for the hyperbolic Fibonacci and Lucas functions of the
order m:

- cF (x+y)

%cFm(Zx) = [cFu()] + [sFn(x)]? (108)
2¢Ln(2x) = [cLn(x)]* + [SLu(x)] (109)

Theorem 8. The following identities similar to the identity for the classical hyperbolic
functions sh(2x) = 2sh(x)ch(x) are valid for the hyperbolic Fibonacci and Lucas functions of the order
m:

% SF(2x) = sFy(x)cFy(x) (110)
Va+m
SL(2x) = sLy(x)cLy(x) (111)

Theorem 9. The following formulas similar to Moivre’s formulas for the classical hyperbolic
functions [ch(x)+ sh(x)]" = ch(nx) + sh(nx) are valid for the hyperbolic Fibonacci and Lucas functions
of the order m:

[eFo(x) + SF,(x)]" = [%JTJ [CF(nx) £ SF ()] (112)
[cLn(x) £ SLy(x)]" = 2" [cFp(nx) + sF,(nx)] (113)

Thus, our investigations led us to the discovery of a unique class of the hyperbolic functions
based on the Gazale formulas (57), (68). Remind that during many centuries the science, in particular,
mathematics and theoretical physics, used widely the classical hyperbolic functions with the base e.
These functions were used by Lobachevsky in his non-Euclidean geometry and by Minkovsky in his
geometric interpretation of Einstein’s theory of relativity. Stakhov, Tkachenko and Rozin’s works [13,
14] violated a monopoly of the classical hyperbolic functions in contemporary mathematics and
theoretical physics. Stakhov, Tkachenko and Rozin proved that the geometry of the Living Nature (in
particular, botanic phenomenon of phyllotaxis) can be modelled by the hyperbolic Fibonacci and Lucas

1+4/5

2
and Lucas functions of the order m based on the Gazale formulas extend indefinitely a number of new
hyperbolic models of Nature. It is difficult to imagine, that the number of new hyperbolic functions
given by formulas (71)-(74) is so much, how many exists real numbers! And all of them possess unique
recursive and hyperbolic properties similar to the properties of the classical hyperbolic functions and

functions with the base @, = (the golden ratio). It is clear that the above hyperbolic Fibonacci
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the hyperbolic Fibonacci and Lucas functions introduced in [13, 14]. This fact is of great importance
for the development of the contemporary hyperbolic geometry and theoretical physics.

5. Fibonacci G,-matrices of the order m
The “direct” Fibonacci G,-matrices

The prominent American mathematician Verner Hoggatt, the founder of the Fibonacci
Association, developed in his book [3] a theory of the Fibonacci O-matrix (14), which is a generating
matrix for the classical Fibonacci numbers (3). By analogy to (14) we can introduce the G,-matrix of
the order m being a generating matrix for the generalized Fibonacci numbers of the order m given by
the recursive relation (20) at the seeds (21).

The G,,-matrix of the order m

m 1
G, = (1 Oj (114)
Notice that the determinant of the G,,-matrix (114) is equal:
Det G,, = mx0 - 1x1 =-1. (115)

The following theorem sets a connection of the G,,-matrix (114) with the generalized Fibonacci
numbers of the order m given by (20), (21) .

Theorem 9. For a given integer n (n=0, =1, £2, £3, ...) the n' power of the G,-matrix of the
order m is given by

F (n+l) F_(n)
GI’Zi = m m (116)
Fm (n) Fm (n-1)
where F,(n-1) , Fu(n) , Fy(n+1) are the generalized Fibonacci numbers of the order m.
Proof. We will use mathematical induction. Clearly, forn =1,
G}n = Fn@ Fm(l)] . (117)
F (1) F, (0)
Using the seeds (21) and the recursive relation (20) we can write:
F.(0)=0,F,(1)=1, F,2)=m F,(1) + F,(0) = m. (118)
It follows from (117) and (118) that
gl (™! (119)
m-o\1 o)

The base of the induction is proved.

Suppose that for a given integer k our inductive hypothesis is the following:
Gk —|"m m
m m
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Then we can write:

G4 =GhxG, = | Fm D Fpy®) x(’" 1J=
“pl Lt o
F (k) F (k-1)

(mE,(k+ 1)+ F,(k) F,(k+1)) (F,(k+2) F,(k+1)
\mF,(k)+F (k=1 FE/ (k) ) \E/(k+1) F, (k) )

Theorem is proved.
The next theorem gives a formula for the determinant of the matrix (116).
Theorem 10. For a given integer n we have:

Det G = (-1)". (120)
Proof. Using general properties of the square matrices [] we can write
Det G! = (Det G,)" (121)

Taking into consideration (115) we can write the expression (121) as follows:
Det G = (Det G»,)" = (-1)".
Theorem is proved.
Theorem 11.
Det G/ = Fu(n+1)xFy(n-1) - E2(n)=(-1)". (122)
The identity (122) follows directly from the matrix (116) and Theorem 10.

Remind that the identity (122) is one of the most important identities for the generalized
Fibonacci numbers of the order m. It is clear that the identity (122) is a generalization of the famous
Cassini formula.

Theorem 12.
G =mG'™"' +G'? (123)

Proof. Using the recursive relation F,,(n+2) = mF,(n+1) + F,(n) we can represent the matrix
(116) in the form:

G - mF, (n)+F, (n-1) mF,(n-1)+F, (n-2) _
"\ mE,(n-1)+F,(n=2) mF,(n=2)+F, (n-3)

[Fm(n) F,,,(n—l)j (Fm(n—l) £,(n=2)
=m +

= mG,’ff1 + G,’f[z
F,(n-1) F,(n-2)) \F,(n-2) F,(n-3)

Theorem is proved.

Also we can represent the expression (116) in the following form:
G =Gl -mG)" (124)
Basing on the recursive relations (123) and (124) we can construct the sequences of the G,-
matrices (116) for the different m. Notice that for the case m=1 the matrices G, coincide with the
matrices Q" given by (15).
Consider now the case m=2. Remind that for this case a sequence of the generalized Fibonacci
numbers F»(n) of the order m=2 looks as is shown in Table 4.
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Table 4. A sequence of the Fibonacci numbers F»(n)

n -7 -6 -5 4 |3 -2 ]|-1]0 ] 1|23 4 5 6 7

m=2 169 | -70 | 29 -12 | 5121110125 12 | 29 | 70 | 169

Construct now a sequence of the matrices G, . For the case n=0 we will define the matrix G,

0o_(! 0 125
Gm [0 J (123)

Using the recursive relation (123) and taking into consideration the seeds (125) and (119) we can
construct the matrices G, G,, G5 and so on as follows:

as follows:

L2 1) (1 0) (5 2
1 0 0 1 2 1

L5 2) (2 1) (12 5

G =2 + - (127)
2 1 1 0 5 2

. 12 5 5 2 29 12
5 2 2 1 12 5

Using the recursive relation (124) and taking into consideration the seeds (125) and (119) we can
construct the matrices G,', G,°, G, and so on as follows:

Gt = ol Y= (129)
1 0 0 1 1 -2

(1 0) (0 1 1 -2

G’ = -2 = (130)
0 1 1 -2) -2 5

L (01 1 -2\ (-2 5

G, = ~2 = (131)
1 -2) -2 5 5 -12

A sequence of the matrices G, is represented in Table 5

Table 5. A sequence of the matrices G,

n 0 1 2 3 4 5

G, 1 0 2 1 5 2 12 5 29 12 70 29
0 1 1 0 2 1 5 2 12 5 29 12

AN 5

Consider the case m=3. Remind that for this case a sequence of the generalized Fibonacci
numbers F3(n) of the order m=3 looks as is shown in Table 6.

Table 6. A sequence of the Fibonacci numbers F3(n)

n -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

m=3 | -337 109 | -33 | 10 | -3 1 0 1 3 10 | 33 | 109 | 360
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Using the seeds (125) and (118) and the recursive formulas (123) and (124) for the case m=3
we can construct the matrices G; (see Table 7).

Table 7. A sequence of the matrices G,

n 0 1 2 3 4 5

G; 1 0 3 1 10 3 33 10 109 33 360 109
0 1 1 0 3 1 10 3 33 10 109 33

G," 1 0 0 1 1 -3 -3 10 10 -33 -33 109
0 1 1 -3 -3 10 10 -33 -33 109 109 -360

It is easy to verify that all square matrices G, of Table 5 and the matrices G; of Table 7 posses

one surprising property: all their determinants are equal +1 (for the even powers n) or -1 (for the odd

29 12

powers n). In fact, the determinant of the matrix G, = (12 s ] is equal 29x5 - 12x12 = 1 and the

-33 109
109 -360
Consider now a general case of m. Remind that the number m is a positive real number, for

determinant of the matrix G;° = ( j is equal (-33)x(-360) - 109x109 = 11880 -11881 = -1.

example, m = V2, m =z m=e (a base of natural logarithms) and so on. Using the recursive relation
(123) and taking into consideration the seeds (125) and (119) we can construct the matrices G-, G,

m?2

G;:m[m 1]{1 Oj:(m2+l mJ (132)
1 0) lo 1 m 1

G, and so on as follows:

2 1 3 2
Gi:m m-+1 m N m _m +2m m” +1 (133)
m 1 1 0 m? +1 m
G m +2m m’+1 N m +1 m m*+3m° m’+2m (134)
=m =
" m* +1 m m 1 m’ +2m m* +1

Using the recursive relation (124) and taking into consideration the seeds (125) and (119) we can
construct the matrices G,', G,>, G, and so on as follows:

G'= —m = (135)
10 0 1) (1 —m

5 1 —-m
G = -m m’+1 (136)
2
; -m m”+1
G =(mz+1 —m3—2mJ (137)

Inverse matrices G,
Consider once again Table 5 and Table 7. They set the “direct” and “inverse” G,-matrices.
Comparing the “direct” (G, ) with the “inverse (G,") G,-matrices it is easy to find a very simple

method to get the “inverse” matrix G," from its “direct” matrix G, .
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In fact, if the power n of the “direct” matrix G, given by (116) is even (n=2k) then for

obtaining its inverse matrix G," it is necessary to interchange the places of the diagonal elements
Fu(n+1) u F,(n-1) in (116) and to take the diagonal elements F,(n) in (116) with the opposite sign.
This means that for the case n=2k the “inverse” matrix G,** has the following form:

G o[ Fn(ZR=1) — £, (2K)
"\ -F (k) F,(2k+1)

To obtain the “inverse” matrix G," from the “direct” matrix G, given by (116) for the case

(138)

n=2k+1 it is necessary to interchange the places of the diagonal elements F,(n+1) u F,(n-1) and to
take them with the opposite sign, that is:

G2k = - En(zk - 1) Fm (2k)
"\ E@Qk)y —F,(2k+1)

One more way to obtain the matrices G, follows directly from the expression (116). With this

(139)

aim we can represent two Fibonacci series Fo(n+1) u F»(n) shifted one relative to another on the one
number (Table 8).

Table 8. The shifted Fibonacci series F>(n+1) u F»(n)
n 6 51 4| 3 2 1 |0 |-1|-2]|-3]-4]-5]-6
Fo(n+1) | 169 | 70 | 29 | 12 | 5 2 1] 0 1 | -2 5 |-12] 29
F»(n) 70 |29 |12 | 5 | 2 1 0|1 |-2]5|-12]29|-70

If we select the number n=1 in the first row of Table 8 and then select the four Fibonacci
numbers of the kind F>(n+1) and F»(n) in the lower two rows under the number 1 and to the right
relative to it, then the totality of these Fibonacci numbers forms the G,,-matrix (119). The G,-matrix is
singled out by fat in Table 8. If we move in Table 8 to the left relative to the G,-matrix, then we will

get the matrices G22 , G23 , ..., Gy, ..., respectively. If we move in Table 8 to the right relative to the
G,-matrix then we will get the matrices G, G,', G,>, ..., G,", respectively. Also the Fibonacci

matrices G, and the “inverse” to it Fibonacci matrix G, are singled out by fat in Table 8. Notice that
1 0
the matrix G, = (0 1) is an identity matrix.

This method of obtaining the G, -matrices can be used for the case of the arbitrary m.

Thus, our investigations led us to the discovery of a unique class of the square G,-matrices
given by (114) and (116). They are a wide generalization of the Hoggatt-Fibonacci O-matrices given by

(14), (15).
6. The “golden” G-matrices of the order m

Stakhov introduced in [26] the so-called “golden” matrices, which are a generalization of the
Hoggatt-Fibonacci O-matrix (15) for continuous domain. The above Stakhov-Fibonacci G,,-matrices of
the order m given by (116) can be used for a wide generalization of Stakhov’s “golden” matrices (19).
We can represent the matrix (116) in the form of the two matrices given for the even (n=2k) and odd
(n=2k+1) values of n:
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2k F (2k+1) F (2k) J (140)
m ~| F_(2k) F._(2k-1)

m m
ket _[Fu@k42) F, k4D )
m F (2k+1) F (2k)

And now we will return back again to the hyperbolic Fibonacci functions of the order m given
by (71), (72). As is shown above, the generalized Fibonacci numbers of the order m are determined
identically through the hyperbolic Fibonacci and Lucas functions of the order m by the correlation (75).

Using (75) we can express the matrices (140) and (141) in the terms of the hyperbolic Fibonacci
functions (71) and (72) as follows:

G2k _ (cFm 2k +1)  sF (2k) ] (142)
m sF (2k)  cF,(2k-1)

G2k+l :LSFm(2k+2) cFm(2k+l)J (143)
m ck (2k+1)  sF,(2k)

where £ is a discrete variable, k=0, 1,2, 43, ... .
If we substitute the discrete variable & in the matrices (142), (143) by the continuous variable x,
then we will come to the two unusual matrices that are the functions of the continuous variable x:

sz _ (cFm 2x+1)  sF,(2x) ] (144)
m sF.(2x)  cF,(2x-1)

G2x+1 _ [sFm(2x+2) cFm(2x+l)j (145)
m cF,(2x+1)  sF,(2x)

Notice that the “golden” matrices of the order m given by (144), (145) are a wide generalization
of the “golden” matrices given by (19), which are partial cases of the matrices (144) and (145) for the
case m=1, that is,

G12x — Q2x and G12x+1 — Q2x+1 (146)

The inverse “golden’ matrices of the order m

We can represent the inverse matrices (138), (139) in the terms of the hyperbolic Fibonacci
functions of the order m given by (71), (72). :

o2k _ (cFm(Zk —1)  —sF,(2k) j (147
m —sF (2k) cF,(2k +1)

o2k 1 Z( —sF.(2k)  cF,(2k+1) j (145)
m ¢F (2k+1) —sF, (2k+2)

where £ is a discrete variable, k=0, +1, +2, 43, ... .

If we substitute now the discrete variable k& in the matrices (147), (148) by the continuous
variable x, then we will come to the following matrices that are the functions of the continuous variable
X

G 2x :(cFm(2x—1) —sF (2x) j (149)

m -sF (2x) cF,(2x+1)
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oy — -sF (2x cF (2x+1
m ckF (2x+1) —sF, (2x+2)
Determinants of the “golden” matrices of the order m
Calculate now the determinants of the matrices (144) and (145):
Det G2* = cF,(2x+1)xcF(2x-1) — [sF,(2x)] (151)
Det G2 = sF,,(2x+2)xsF(2x) — [cFu(2x+1)]? (152)

Compare now the expression (151), (152) with the identities (99), (100) for the hyperbolic
Fibonacci functions of the order m. Because the identities (99), (100) are valid for all values of the
variable x, in particular, for the value 2x, the following identities follow from this consideration:

Det G2 =1 (153)

Det G2**'=-1 (154)
By analogy we can prove the following identities for the “inverse” matrices (149), (150):

Det G, =1 (155)

Det G, 7'=-1 (156)

Notice that the unusual identities (152)-(156) are a generalization of the Cassini formula for
continuous domain.

Thus, our investigations, which are a continuation of our theory of the “golden” matrices [26],
led us to the discovery of a unique class of the “golden” G,-matrices given by (144) and (145). They
are a wide generalization of Stakhov’s “golden” matrices given by (19).

7. The improved method of the “golden” cryptography

Stakhov developed in [26] a new kind of cryptography based on the use of the “golden”
matrices (19). The above “golden” direct and inverse matrices of the order m given by (144), (145),
(149), (150) allow to improve the “golden” cryptographic method developed in [26].

Let the initial message be a “digital signal”, which is any sequence of real numbers called
readings:

ai, az, as, s, ds, dg, 7, 4s, ... (157)
There are many examples of the “digital signals” of the kind (157): digital telephony, digital TV,

digital measurement systems and so on.
Choose the first four readings ai, az, a3, as from (157) and form from them a square 2x2-matrix

a a
M =( ! 2J (158)

a, a,

M:

Notice that the initial matrix M can be considered as a plaintext [24].

Notice that there are 4! = 4x3x2x1 = 24 variants (permutations) to form the matrix (158) from
the four readings ai, a;, as, as . Designate the i-th permutation by P; (i=1, 2, ..., 24). The first step of
cryptographic protection of the four readings ai, az, as, as is a choice of the permutation P; .
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Then we choose the direct “golden” matrices (144) or (145) as enciphering matrices and their
inverse matrices (149), (150) as deciphering matrices.
Consider now the following encryption/decryption algorithms based on matrix multiplication
(see Table 9).
Table 9. Encryption/decryption algorithm based on the G,-matrices

Encryption Decryption
MxG>* = E\(x, m) Ei(x,m)x G,;>* =M
Mx G2 = E(x,m) Eyx,m)x G2 =M

Here M is the plaintext (158) that is formed according to the permutation P;; E (x, m), Ex(x, m) are code
matrices or cipher texts; G.*, G.**' are the enciphering matrices given by (144), (145); G,>* and

G.>*" are the deciphering matrices given by (149), (150).
Notice that the encryption/decryption algorithm given by Table 9 is a partial case of the
encryption/decryption algorithm developed in [26] because for the case m=1 the matrices G;* and

G are reduced to the matrices O™ and 0™, respectively.

From the point of view of cryptography the main advantage of the “golden” cryptographic
method given by Table 9 is an appearance of new cryptographic key, the “gnomonic” number m, which
is a positive real number. Thus, the code matrices E(x, m), E»(x, m) are functions of the two continuous
variables x and m, what can give new possibilities for cryptographic protection.

Let us prove that the encryption/decryption algorithm given by Table 9 provides the one-valued
transformation of the plaintext M into the cipher text E and then the cipher text E into the plaintext M.
We will consider this transformation for the case when we choose the matrix (144) as enciphering
matrix and the matrix (149) as deciphering matrix. For the given value of the cryptographic keys x and
m the “golden” encryption, that is, the transformation of the plaintext M into the cipher texts E;(x, m)
can be represented as follows:

MG = (al azj y (cFm(2x +1)  sF,(2x) J: (e“ elzj _E(e, m) (159)
a, a, sF (2x)  cF,(2x-1) €, e,

where
e = aicF,(2x+1) + axsF,(2x) (160)
enn = aisFy(2x) + axcF,(2x-1) (161)
e = ascF,(2x+1) + assF,(2x) (162)
en = a3sFy,(2x) + ascF,,(2x-1) (163)

Consider the “golden” decryption for this case:
E(om)x G2 = (ell elzjx(chQx—l) —sFs(2x) jz(dn dlzj -p (164)
e e, —sFs(2x) cFs(2x+1)) \d, d,

where
d11 =encFm(2x—l)—elstm(2x) (165)
d12=-enSFm(2x)+elchm(2x—1) (166)
dz] = 621cFm(2x—l) — ezstm(2x) (167)
dry = - e15F,(2x) + exncF,(2x-1) (168)

For the calculation of the matrix elements given by (165)-(168) we can use the expressions
(160)-(163). Then we have:
di = [aicFn(2x+1) + axsF(2x)] cFn(2x-1) — [a18Fu(2x1) + axcFy(2x-1)]sF,(2x) =
= a1cFp(2x+1) cFpu(2x-1) + a2sF(2x) cF(2x-1) - ai[sFn(2X)]* —
- a2cF(2x-1) sFp(2%) = a1 {cFpu(2x+1) cF(2x-1) — [sF,u(2)]} (169)
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Using the fundamental identities (99), (100) we can simplify the expression (169) as follows:

d11 =da. (170)
In the same manner after corresponding transformations we can write:
din=a (171)
dy = as (172)
dn = ay (173)
Using (170)-(173) we can write the matrix (164) as follows:
D= [dn dlzJ: [al azJ:M (174)
dy dy a; dy

This means that a cryptographic method given by Table 9 provides the one-valid transformation of the
initial plaintext M at the entrance of the coder into the same plaintext M at the exit of the decoder.

Determinants of the code matrices

Calculate now the determinant of the cipher texts, that is, the code matrices E/(x,m), E>(x,m):

Det E(x,m) = Det MxDet G.* (175)
Det Es(x,m) = Det MxDet G.*"' (176)
If we use the identities (153), (154), we can write the expressions (175), (176) as follows:
Det E;(x,m) = Det M (177)
Det Ex(x,m) = - Det M (178)

This means that the determinants of the matrices Ej(x,m) and E,(x,m) are defined identically by the
determinant of the initial matrix M.

Peculiarities of the “golden” cryptography based on the G,-matrices

As we remembered above, the “golden” cryptographic method based on the G,,-matrices (Table
9) has important distinction from Stakhov’s method developed in [26]. In Stakhov’s method [26] we
use the only kind of the hyperbolic functions, the symmetric hyperbolic Fibonacci functions given by
(16), that is, the form of the hyperbolic functions remains without change and the cryptographic
protection is provided by the continuous variable x, which is used as cryptographic key. For the case of
the “golden” cryptographic method given by Table 9 we use an infinite number of the hyperbolic
Fibonacci functions of the order m given by (71), (72). At that we use the two cryptographic keys, the
continuous variable x and the “gnomonic number” m, which determines the form of the used hyperbolic
functions (71), (72). This means that the realization of the encryption algorithm, which is reduced to
the calculation of the elements of the code matrix (159), id reduced to the fulfillment of the following
calculations:

€11 = a

2x+1 —2x-1
1 (m+\/4+m2 N m+\/4+m2j n

\/4+m2 2 2

+a (179)

\/4+m2 2

2x -2x
m+4+m’ _(m+\/4+m2J
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€12 = ai

\/4+m2

2

4—a2

1

\/4+m2

2

1 (m+\/4+m2

€1 = as

\/4+m2

2x+1
(m+\/4+m2] N

2

4—a4

1

\/4+m2

2

1 (m+\/4+m2

€ = as

i+ m?

2

4—a4

\/4+m2

1 (m+\/4+m2

2

2

2x-1 3 —2x+1
m+4+
+ e —

m+~N4+m’ J_Zx N

3

2

+

m+~N4+m’ J_Zx

2

2x-1 —2x+1
+[m+\/4+m2J

2

(180)

(181)

(182)

The realization of the decryption algorithm, which is reduced to the calculation of the elements
of the code matrix (164), means the fulfillment of the following calculations:

1

dii = e

Va+m?

2

2x-1
[m+\/4+m2] N

€12

1

\/4+m2

2

dip=- e

terp

1

\/4+m2

1 [m+\/4+m2

2

[m +N4+m )_hﬂ i

2

]2){ ) (m N WJZX

2x —-2x
(m+\/4+m2] _[m+ 4+m2J N
2

\/4+m2

dr = e

—€n

\/4+m2

2

2x—-1
1 (m+\/4+m2 N

2x-1
(m+\/4+m2] N

\/4+m2

2x -2x
1 (m+ 4+m’ _(m+\/4+m2

(183)

(184)

(185)
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+

dpn=-e¢
2 21\/4+m2 > >

+ ey (186)

2x-1 —2x+1
1 [m+\/4+m2J +(m+ 4+m J

\/4+m2 2 2

8. Advantages of the new method of the “golden” cryptography
Improvement of cryptographic protection

We can improve the cryptographic protection of the methods based on Table 9 if we use
multiple encryption and decryption. This idea consists in the following. The first step of the encryption
is to use the key

K1={P,~,x1,m1} (187)

The cryptographic key (187) includes any permutation P; of the matrix (158) and some values
x; of the continuous variable x and the “gnomonic” number m; taken in random manner. As a result of
the encryption we can get the code matrix the code matrix E(P;, xi, m;) given by (159). The second step
of the encryption is to use the matrix E(P;, x;, m;) as the initial matrices for the new encryption. With
this aim we can use the second cryptographic keys

Ki={P;, x2, mo} (188)
where P; is the next permutation, x; is the next value of x and m is the next value of m.. After the
fulfillment of the “golden” encryption with the key (188) we can get a new code matrix E that is a
function of the two permutation P; and P;, the two values x; and x, and the two values m;, m; , that is,

E=E(Pj,x1,m1; Pj, X2, MQ) (189)

In general case we can repeat this procedure & times, that is, the cryptographic key K is a totality
of the k random permutations P;, P, ..., P, , the k random values xy, x», ..., x; and the k random values
my, mo, ..., my thatis,

K={P;, x1, mi; Pj, xo, mo; ... ; P, Xy, my) (189)

As the outcome of the multiple encryption, we can get the code matrix
E =E (K).
For the decryption we have to use the inverse cryptographic key K™ that is an inverse form of the initial
cryptographic key (189), that is,
K'={ Py, x4, my; P, X1 , Myt ... 5 Pjy xa, ma; Py, x1, my) (190)

Transmission of the cryptographic keys

It is clear the “golden” cryptographic method relates to symmetric-key cryptography. As is well
known, a problem of the key distribution is the main shortcoming of the symmetric-key cryptography.
To eliminate this shortcoming, in the recent decades the so-called public-key or asymmetric
cryptography was developed. In the asymmetric cryptosystems we use the two keys: public key and
private or secret key. The encryption of the message before transmission is fulfilled by the use of the
public key and the decryption of cipher text is fulfilled by the use of the secret key. However, the
asymmetric cryptography has two shortcomings:
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(1) The asymmetric cryptography uses very complicated encryption and decryption algorithms.
This means that sometimes this kind of cryptography cannot be used for the protection of
digital signals in real scale of time.

(2) Because the encryption and decryption algorithms are very complicated and demands
complicated processors for their realization, this fact puts forward a problem to guarantee that
the encryption and decryption algorithms would be fulfilled without errors (a problem of
reliable computations).

To design fast and reliable cryptographic method we can join the “golden” cryptography with
the asymmetric cryptography. We will use the existing asymmetric cryptosystems for the distribution
of the key (189). Such approach has the following advantages:

(1) Because simplicity of the “golden” encryption/decryption algorithms, we can use the “golden”
cryptographic system given by Table 9 for the fast transmission of the digital signals.

(2) We can use the unique mathematical property of the “golden” cryptography given by (177),
(178) to check the encryption and decryption results.

This means that using the “golden” cryptography method given in Table 9 we can design fast,
simple for technical realization and reliable cryptosystems.

Notice that for every session of transmission we can change the cryptographic key (189). This
means that the analysis of the previous transmissions cannot be used for uncovering the current
cryptographic key (189). We can change the cryptographic key (189) using a generator of random
numbers. This means that we have many different ways to improve the cryptographic protection.

9. Conclusion

In author’s opinion the present paper is of a great importance for the development of the
contemporary theory of Fibonacci numbers and the Golden Section [1-10] and also for contemporary
mathematics and computer science. In conclusion the author would like to discuss the mathematical
results of this paper from this general point of view:

1. Gazale formulas. Since ancient time it is usual to mathematics to name new
mathematical discoveries and theories by the name of the outstanding mathematicians
who made these discoveries and theories (Pythagoras Theorem, Euclidean geometry,
Conic sections by Apollonius, Diophantine equations, Lobachevsky’s geometry, Euler’s
formulas, Moivre’s formulas and so on). In the Fibonacci numbers theory [2, 3, 7] there
are a number of the fundamental mathematical results named in the honor of the
outstanding scientists. Binet formulas and Cassini formulas are the most known
examples of such formulas in the Fibonacci numbers theory. Considering the Gazale
formulas (51), (68) from this point of view, we should note that these formulas have
great importance for the development of the contemporary Fibonacci numbers theory
and go far the framework of the Fibonacci numbers theory. They generate an infinite
number of the generalized Fibonacci and Lucas numbers of the order m similar to the
classical Fibonacci and Lucas numbers (3), (6), which are partial cases of the new
numerical sequences for the case m=1. Gazale formulas belong to the outstanding
mathematical results and are of great importance for number theory.

2. Hyperbolic Fibonacci and Lucas functions of the order m are a wide generalization
of the symmetric hyperbolic Fibonacci and Lucas functions introduced by Stakhov and
Rozin in 2005 [14]. Remind that during many centuries the science, in particular,
mathematics and theoretical physics, used widely the classical hyperbolic functions with
the base e. These functions were used by Lobachevsky in his non-Euclidean geometry
and by Minkovsky in his geometric interpretation of Einstein’s theory of relativity.
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Stakhov, Tkachenko and Rozin’s works [13, 14] violated a monopoly of the classical
hyperbolic functions in contemporary mathematics and theoretical physics. Stakhov,
Tkachenko and Rozin proved that the geometry of the Living Nature (in particular,
botanic phenomenon of phyllotaxis) can be modelled by the hyperbolic Fibonacci and

1+4/5

5 > (the golden ratio). It is clear that the above

hyperbolic Fibonacci and Lucas functions of the order m based on the Gazale formulas
extend indefinitely a number of new hyperbolic models of Nature. It is difficult to
imagine, that the number of new hyperbolic functions given by formulas (71)-(74) is so
much, how many exist real numbers! And all of them possess unique recursive and
hyperbolic properties similar to the properties of the classical hyperbolic functions and
the hyperbolic Fibonacci and Lucas functions introduced in [13, 14]. This fact is of great
importance for the development of the contemporary hyperbolic geometry and
theoretical physics.

Lucas functions with the base @, =

3. The “golden” matrices of the order m are a wide generalization of Stakhov’s
“golden” matrices introduced in 2006 [26]. They are based on the hyperbolic Fibonacci
and Lucas functions of the order m and are of great importance for matrix theory.

4. A new cryptographic method based on the “golden” matrices of the order m is a
wide generalization of Stakhov’s “golden” cryptographic method developed in 2006
[26]. This new cryptographic method improves considerably possibilities of the
cryptographic protection and can lead to the design of the fast, simple for technical
realization and reliable cryptosystems.

Notice that this paper is natural corollary of the preceding author’s works in the “Golden
Section” field [4-6, 11-28], first of all, the papers [13,14], in which Stakhov, Tkachenko and Rozin
developed a new class of hyperbolic functions, and the papers [23, 25, 26], in which Stakhov
developed a new class of the Fibonacci and “golden” matrices and a new kind of coding theory and
cryptography.

It is clear that the Gazale formulas [9], a new class of the hyperbolic Fibonacci and Lucas
functions, a new class of the “golden” matrices and a new cryptographic method developed in the
present paper are of the bright examples of the “global fibonaccization” of modern science, which finds
its reflection in the works of Vera W. de Spinadel [8], Jay Kappraff [9], Midhat J. Gazale [10], Mauldin
and Willams [29], El Nashie [30-36], Vladimirov [37, 38], Soroko [39], Bodnar [40], Petoukhov [41]
and so on.
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