А.П. Стахов, С.Х. Арансон, И.В. Хантон

ЗОЛОТАЯ ФИБОНАЧЧИЕВА ГОНИОМЕТРИЯ, РЕЗОНАНСНАЯ СТРУКТУРА ГЕНЕТИЧЕСКОГО КОДА ДНК, ПРЕОБРАЗОВАНИЯ ФИБОНАЧЧИ-ЛОРЕНЦА И ДРУГИЕ ПРИЛОЖЕНИЯ

Часть III. Преобразования Фибоначчи-Лоренца и их связь с золотым универсальным генетическим кодом

Аннотация

Статья посвящена взаимосвязи между фибоначчиевой гониометрией, резонансной структурой генетического кода ДНК и преобразованиями Фибоначчи-Лоренца. Основой этой взаимосвязи является «золотая пропорция» (или «золотое сечение») - древнейшая научная парадигма о гармонии и красоте.

Рассматриваются также другие приложения чисел Фибоначчи, золотой пропорции и золотой фибоначчиевой гониометрии, в частности, новая геометрическая теория филлотаксиса Боднара, «золотые» геноматрицы Петухова и новая интерпретация периодической системы Менделеева.

Статья представлена в 4-х частях. Часть 3 посвящена изложению нового подхода к знаменитым Преобразованиям Лоренца, которые лежат в основе специальной теории относительности Эйнштейна. Исходя из золотой фибоначчиевой гониометрии, предложены Преобразования Фибоначчи-Лоренца. Рассмотрены некоторые новые космологические интерпретации.

5. Преобразования Лоренца

Преобразованиями Лоренца называются кинематические формулы преобразования координат и времени в специальной теории относительности (СТО), созданной Альбертом Эйншнейном в 1905 году.¹

Они были предложены в 1904 году нидерландским физиком и математиком Гендриком Антоном Лоренцом ещё до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики.

Преобразования Лоренца устанавливают связь между пространственными координатами (x_1, x_2, x_3) и моментом времени *t* события, наблюдаемого в инерциальной системе отсчёта $K = (x_0 = c t, x_1, x_2, x_3)$, и пространственными координатами (x'_1, x'_2, x'_3)

¹ Вопрос приоритета в создании СТО имеет дискуссионный характер: основные положения и полный математический аппарат теории, включая групповые свойства преобразований Лоренца, в абстрактной форме были впервые сформулированы французским математиком, физиком и астрономом А.Пуанкаре в статье «О динамике электрона» (лето 1905 года) на основе предшествующих результатов Г.А. Лоренца, а явный абстрактный вывод базиса теории- преобразований Лоренца, из минимума исходных постулатов был дан А. Эйнштейном в практически одновременной работе « К электродинамике движущихся сред»(1905 год).Однако только Эйнштейну удалось ясно на физическом языке сформулировать постулаты новой теории и, прежде всего, принцип относительности и принцип существования предельной скорости распространения сигнала. Только Эйнштейну удалось раскрыть физическое содержание теории относительности. Опора на достижения современной экспериментальной физики позволяет утверждать, что в пределах своей области применимости - при пренебрежении эффектами гравитационного взаимодействия тел, СТО является справедливой с очень высокой степенью точности (до 10⁻¹² и выше). СТО перестаёт работать в масштабах всей Вселенной, а также в случаях сильных полей тяготения, где её заменяет более общая теория-общая теория относительности (ОТО).Специальная теория применима и в микромире, её синтезом с квантовой механикой является квантовая теория поля..

и моментом времени t' этого же события, наблюдаемого в инерциальной системе отсчёта $K'=(x'_0=c\ t',x'_1,x'_2,x'_3).$

Здесь с $[m \cdot ce\kappa^{-1}]$ -скорость света в пустоте, $t [ce\kappa]$ –время, x_0, x_1, x_2, x_3 имеют размерность [m]. Для случая, когда система K' движется относительно системы K со скоростью $v [m \cdot ce\kappa^{-1}]$ вдоль оси x_1 , преобразования Лоренца имеют вид [16]:

$$\begin{pmatrix} \boldsymbol{x}_{0} \\ \boldsymbol{x}_{1} \\ \boldsymbol{x}_{2} \\ \boldsymbol{x}_{3} \end{pmatrix} = \begin{pmatrix} ch(\theta) & sh(\theta) & 0 & 0 \\ sh(\theta) & ch(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{x}'_{0} \\ \boldsymbol{x}'_{1} \\ \boldsymbol{x}'_{2} \\ \boldsymbol{x}'_{3} \end{pmatrix},$$
(3.1)

где θ (- $\infty < \theta < +\infty$) называется углом гиперболического поворота,

$$sh(\theta) = \frac{v/c}{\sqrt{1 - (v/c)^2}}, \quad sh(\theta) = \frac{1}{\sqrt{1 - (v/c)^2}}.$$
 (3.2)

Четырёхмерно пространство R_1^4 с координатной системой $K = (x_0 = c \ t, \ x_1 \ x_2 \ x_3)$, снабжённое знакопеременной метрикой

$$(ds)^2 = (dx_0)^2 - (dx_1)^2 - (dx_2)^2 - (dx_3)^2 - (dx_4)^2$$
, (3.3)
ле ds – элемент луги, называется четырёхмерным пространством Минковского, а

где *ds* – элемент дуги, называется четырёхмерным пространством Минковского, метрика (3.3) –метрикой Минковского.

Это пространство предложено немецким математиком и физиком Германом Минковским в 1908 году в качестве геометрической интерпретации пространствавремени специальной теории относительности.

Метрика Минковского (3.3) обладает замечательным свойством *инвариантности* относительно преобразований Лоренца (3.1).

Из инвариантности метрики Минковского (3.3) относительно преобразований Лоренца (3.1) с учётом соотношений (3.2) вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцово сокращение длины, а также вывод об относительности одновременности.

В [16] рассмотрены также *n*-мерные пространства R_1^n ($n \ge 2$) с координатной системой $K = (x_0 = ct, x_1, ..., x_{n-1})$, снабжённые знакопеременной метрикой

$$(ds)^{2} = (dx_{0})^{2} - \sum_{i=1}^{n-1} (dx_{i})^{2}, \qquad (3.4)$$

которые названы пространствами Минковского размерности п.

В частности, в [16] подробно исследован случай n=2 (*плоскость Минковского* R_1^2) и двумерные преобразования Лоренца

$$\begin{pmatrix} \boldsymbol{\chi}_0 \\ \boldsymbol{\chi}_1 \end{pmatrix} = \begin{pmatrix} ch(\theta) & sh(\theta) \\ sh(\theta) & ch(\theta) \end{pmatrix} \begin{pmatrix} \boldsymbol{\chi}'_0 \\ \boldsymbol{\chi}'_1 \end{pmatrix} ,$$
 (3.5)

где $sh(\theta), ch(\theta)$ удовлетворяют условию (3.2).

Определитель матрицы

$$A = \begin{pmatrix} ch(\theta) & sh(\theta) \\ sh(\theta) & ch(\theta) \end{pmatrix}$$
(3.6)

преобразования (3.5) равен $det A = ch^2(\theta) - sh^2(\theta) = 1$, а метрика Минковского имеет вид:

$$(ds)^{2} = (dx_{0})^{2} - (dx_{1})^{2}.$$
(3.7)

Преобразования (113) называются в [16] собственными двумерными преобразованиями Лоренца.

Поскольку в (110) присутствует $\sqrt{1 - (v/c)^2}$ и $th(\theta) = v/c$, то 1- $(v/c)^2 > 0$, откуда при всех $\theta(-\infty < \theta < +\infty)$ выполняется неравенство

$$|v| < c. \tag{3.8}$$

В работах [17]-[19] С.Х. Арансон и Е.В. Жужома подробно исследовали арифметические и динамические свойства собственных двумерных преобразований Лоренца в ситуации, когда вместо плоскости Минковского взят двумерный тор T^2 , надёлённый как структурой плоского риманова многообразия, так и структурой лоренцова многообразия постоянной нулевой кривизны.

В этом случае «скорость света c» и параметр v, фигурирующие в соотношении (3.2), начинают квантоваться, при этом множество допустимых c для преобразований Лоренца на торе T^2 является счётным, всюду плотным на положительной полупрямой, и каждое допустимое c является иррациональным алгебраическим числом, радикалом некоторого положительного рационального числа. Выявлены также спектральные свойства допустимых «скоростей света c».

Имеет также смысл рассматривать на плоскости Минковского R_1^n несобственные двумерные преобразования Лоренца

$$\begin{pmatrix} \boldsymbol{X}_{0} \\ \boldsymbol{X}_{1} \end{pmatrix} = \begin{pmatrix} sh(\theta) & ch(\theta) \\ ch(\theta) & sh(\theta) \end{pmatrix} \begin{pmatrix} \boldsymbol{X}'_{0} \\ \boldsymbol{X}'_{1} \end{pmatrix},$$
(3.9)

где определитель матрицы

$$A = \begin{pmatrix} sh(\theta) & ch(\theta) \\ ch(\theta) & sh(\theta) \end{pmatrix}$$
(3.10)

преобразования (3.9) равен $det A = sh^2(\theta) - ch^2(\theta) = -1$, а метрика Минковского $(ds)^2 = (dx_0)^2 - (dx_1)^2$. (3.11)

антиинварианта относительно преобразования (3.9), то есть $(ds)^2 = (dx_0)^2 - (dx_1)^2 = -(ds')^2 = -(dx'_0)^2 + (dx'_1)^2$, (3.12)

но инвариантна относительно преобразования

$$\begin{pmatrix} \boldsymbol{\chi}_0 \\ \boldsymbol{\chi}_1 \end{pmatrix} = \begin{pmatrix} ch(2\theta) & sh(2\theta) \\ sh(2\theta) & ch(2\theta) \end{pmatrix} \begin{pmatrix} \boldsymbol{\chi}''_0 \\ \boldsymbol{\chi}''_1 \end{pmatrix},$$
(3.13)

то есть

$$(ds)^{2} = (dx_{0})^{2} - (dx_{1})^{2} = (ds')^{2} = (dx''_{0})^{2} - (dx''_{1})^{2}.$$
(3.14)

Определитель матрицы

$$A^{2} = \begin{pmatrix} ch(2\theta) & sh(2\theta) \\ sh(2\theta) & ch(2\theta) \end{pmatrix}$$
(3.15)

равен

$$\det A^{2} = ch^{2} (2\theta) - sh^{2} (2\theta) = 1, \qquad (3.16)$$

при этом

$$sh(\theta) = sign(v) \frac{1}{\sqrt{(v/c)^2 - 1}}, ch(\theta) = \frac{|v|/c}{\sqrt{(v/c)^2 - 1}}.$$
 (3.17)

Здесь sign(v) - знак числа v, то есть

$$sign(v) = \begin{cases} -1, e c \pi u - \infty < v < 0 \\ 0, e c \pi u \quad v = 0 \\ +1, e c \pi u \quad 0 < v < +\infty \end{cases}$$
(3.18)

Поскольку в (3.17) присутствует $\sqrt{(v/c)^2 - 1}$ и $cth(\theta) = v/c$, то $(v/c)^2 - 1 > 0$, откуда при всех $\theta(-\infty < \theta < +\infty)$ выполняется неравенство

$$|v| > c.$$
 (3.19)

6. Двумерные преобразования Фибоначчи-Лоренца

6.1. Собственные двумерные преобразования Фибоначчи-Лоренца

Выше на плоскости Минковского R_1^2 были рассмотрены собственные двумерные преобразования Лоренца (3.5), зависимые от двух параметров: *с*- скорости света в пустоте, являющейся постоянной величиной в любой инерциальной системе отсчёта, и *v*-постоянной скорости движения одной инерциальной системы отсчёта относительно другой инерциальной системы отсчёта.

Назовём величину $\bar{v} = \frac{v}{c}$ нормированной относительной скоростью и соотношение (3.8) перепишем в виде:

$$\overline{v} = \frac{sh(\theta)}{ch(\theta)} = th(\theta), \left|\overline{v}\right| < 1.$$
(3.20)

Перепишем также соотношения (3.5) в виде:

$$\begin{aligned} f(ct) &= ch(\theta)(ct') + sh(\theta)x'_1 \\ x_1 &= sh(\theta)(ct') + ch(\theta)x'_1 \end{aligned}$$
(3.21)

Предположим, что в соотношениях (3.21) параметр $c \neq const^2$, а равен величине

$$c = c(\boldsymbol{\psi}) = c(\boldsymbol{\psi}) c_0, \qquad (3.22)$$

где безразмерную величину $\psi(-\infty < \psi < +\infty)$ назовём параметром самоорганизации, величину $c_0 = const$, размерность которой равна [*м. сек*⁻¹], - нормирующим множителем (например, c_0 можно считать равной эйнштейновской скорости света в пустоте, равной величине 2.998 • 10⁸ м. сек⁻¹, делённой на золотую пропорцию $\tau = 1,61803$, параметр $c(\psi)$, который является безразмерной величиной и будет конкретизирован ниже, нормированной фибоначчиевой скоростью света в пустоте.

Обозначим через $\xi = c_0 t$, $\xi' = c_0 t'$ величины, имеющие размерность [*м*]. Тогда (3.21) перепишется в виде

$$\overline{c}(\psi)\xi = \overline{c}(\psi)ch(\theta)\xi' + sh(\theta)x'_{1}$$

$$x_{1} = \overline{c}(\psi)\xi' + ch(\theta)x'_{1}$$
(3.23)

Разделим первую строчку в (3.23) на $c(\psi)$, тогда получим преобразование вида:

$$\begin{pmatrix} \xi \\ \chi_1 \end{pmatrix} = \begin{pmatrix} ch(\theta) & \frac{sh(\theta)}{\bar{c}(\psi)} \\ -c(\psi)sh(\theta) & ch(\theta) \end{pmatrix} \begin{pmatrix} \xi' \\ \chi'_1 \end{pmatrix}$$
(3.24)

Преобразованию (3.24) соответствует матрица вида:

$$\Omega = \begin{pmatrix} ch(\theta) & \frac{sh(\theta)}{\bar{c}(\psi)} \\ \bar{c}(\psi)sh(\theta) & ch(\theta) \end{pmatrix}$$
(3.25)

 $^{^2}$ Тот факт, что в разные периоды «скорость света *с* в пустоте» не всегда была постоянной величиной, согласуется с современными научными воззрениями на эволюцию мироздания с момента Большого Взрыва по настоящее время.

Для того, чтобы конкретизировать параметр $c(\psi)$, представим матрицу Ω в таком виде, чтобы её элементами были введённые в [4, 5] А.П. Стаховым и Б.Н. Розиным симметричные гиперболические функции Фибоначчи sFs, cFs : ³

$$\Omega = \begin{pmatrix} cFs(\psi - 1) & sFs(\psi - 2) \\ sFs(\psi) & cFs(\psi - 1) \end{pmatrix}.$$
(3.26)

Заметим, что матрицы вида (3.26) впервые былы введены А.П. Стаховым в [7] и названы «золотыми» матрицами.

Матрицу Ω вида (3.26) назовём собственной двумерной матрицей Фибоначчи – Лоренца, а преобразование

$$\begin{pmatrix} \xi \\ \chi_1 \end{pmatrix} = \begin{pmatrix} cFs(\psi-1) & sFs(\psi-2) \\ sFs(\psi) & cFs(\psi-1) \end{pmatrix} \begin{pmatrix} \xi' \\ \chi'_1 \end{pmatrix}$$
(3.27)

собственным двумерным преобразованием Фибоначчи -Лоренца.

Как показано в [7], определитель матрицы (3.26) равен

det $\Omega = 1$,

при этом, согласно первому соотношению в (1.12), получаем равенство

$$Fs(\psi) = cFs(\psi - 1) + sFs(\psi - 2).$$
(3.29)

Поскольку матрицы (3.25) и (3.26) равны между собой, то их соответствующие элементы совпадают, откуда получаем соотношения:

$$ch(\theta) = cFs(\psi - 1)$$

$$\frac{sh(\theta)}{\overline{c}(\psi)} = sFs(\psi - 2)$$

$$\overline{c}(\psi)sh(\theta) = sFs(\psi)$$
(3.30)

(3.28)

Отсюда следуют соотношения:

$$ch(\theta) = cFs(\psi - 1)$$

$$sh(\theta) = \bar{c}(\psi)sFs(\psi - 2) = \frac{sFs(\psi)}{\bar{c}(\psi)}$$
(3.31)

Но тогда из второго соотношения в формулах (3.31) получаем, что нормированная фибоначчиевая скорость света $c(\psi)$ в пустоте для двумерного собственного преобразования Фибоначчи-Лоренца имеет вид:

$$\bar{c}(\psi) = \sqrt{\frac{sFs(\psi)}{sFs(\psi-2)}}.$$
(3.32)

Подставим (3.32) во второе соотношение в (3.30). Тогда получим равенство:

$$sh(\theta) = \sqrt{\frac{sFs(\psi)}{sFs(\psi-2)}} \quad sFs(\psi-2).$$
(3.33)

³ По этому поводу см. также пункт 1.2 настоящей статьи, где описаны замечательные свойства симметричных функций Фибоначчи *sFs* (*x*), *cFs* (*x*), построенных на основе золотой пропорции (золотого сечения) $\tau = \frac{1+\sqrt{5}}{2} \approx 1.61803$ и отличающихся от классических гиперболических функций *sh*(*x*), *ch*(*x*) тем, что при целочисленных значениях *x* они принимают целочисленные значения, являющиеся числами Фибоначчи *F_n*, а именно, *sFs* (*n*) =*F_n* при чётном *n*, и *cFs* (*n*) =*F_n* при нечётном *n*. Именно выбор симметричных гиперболических функций Фибоначчи соответствует наилучшему показателю гармонии $\lambda = 1$ при гармоническом анализе генетических кодов ДНК, и, как мы в дальнейшем увидим, замечательным свойствам преобразований Фибоначчи-Лоренца и их связи с генетическими кодами ДНК, имеющими показатель гармонии $\lambda = 1$.

Отсюда получаем функцию

$$\theta = \theta(\psi) = \operatorname{Arcsh} z = \ln[z + \sqrt{z^2 + 1}], \ z = \overline{c}(\psi) \, sFs(\psi - 2)$$

После несложных преобразований эта формула приобретает вид:

$$\theta = \theta(\psi) = \ln \left[\sqrt{\frac{sFs(\psi)}{sFs(\psi-2)}} \quad sFs(\psi-2) + cFs(\psi-1) \right]$$
(3.34)

Функция (3.34) определена на множестве $D=\{-\infty < \psi \le 0\} \cup \{2 \le \psi < +\infty\}$, на котором эта функция непрерывна и взаимно однозначна. На интервале $0 < \psi < 2$ функция $\theta = \theta(\psi)$ не определена, поскольку на этом интервале $\bar{c}(\psi)$ является мнимой величиной.

В таблице 16 представлены численные значения функции $\theta = \theta(\psi)$ на множестве *D*.

Таблица 16. Численные значения функции $\theta = \theta(\psi)$ на множестве D

Ψ	-∞	-3	-2	-1	0-0	-	2+0	3	4	5	+∞
θ	.∞	-1.8077	-1.3169	- 0.8047	0	-	0	0.8047	1.3169	1.8077	$^+\infty$

На рис. З изображён график нормированной фибоначчиевой скорости света $c(\psi)$ в пустоте в зависимости от параметра самоорганизации ψ , полученной по формуле (3.32).

Рисунок 3. График зависимости фибоначчиевой скорости света $\bar{c} = \bar{c}(\psi)$ от параметра самоорганизации ψ .

График функции $c = c(\psi)$ имеет три асимптоты, из которых две для ветви $c = c(\psi)$ при $2 < \psi < +\infty$ (вертикальная асимптота $\psi = 2$ и горизонтальная асимптота $c = \tau \approx 1.61803$) и одна – для ветви $c = c(\psi)$ при $-\infty < \psi < 0$ (горизонтальная асимптота $c = \tau^{-1} \approx 0.61803$).

Космологическая интерпретация. Если интерпретировать график, изображённый на рис. 3, в космологическом плане как эволюцию нормированной фибоначчиевой скорости света $\bar{c} = \bar{c}(\psi)$ при изменении параметра самоорганизации ψ от бесконечно

далёкого прошлого ($\psi = -\infty$) до бесконечно далёкого будущего ($\psi = +\infty$), то условно наблюдаемую картину можно разбить на пять следующих периодов.

Здесь и в дальнейшем, если не оговорено отдельно, то для удобства восприятия и сокращения текста вместо термина «нормированная фибоначчиевая скорость света c в пустоте» будем употреблять термин «фибоначчиевая скорость света c ».

Период 1. До Большого Взрыва (- ~ < \u03c6 < 0)

Этот период характеризуется нестабильностью существования, так как фибоначчиевая скорость света \overline{c} падает от значения $\overline{c} = \tau^{-1} \approx 0.161803$ до полного исчезновения, то есть до значения $\overline{c} = 0$ (до момента Большого Взрыва).

Период 2. Большой Взрыв ($\psi = 0$)

Этот момент, называемый в физике и математике бифуркацией (или катастрофой), применяется к ситуации, когда некоторый объект $Q = Q(\mu)$ зависит от параметра μ и в любой окрестности некоторого значения $\mu = \mu_0$ (бифуркационное значение, или точка) исследуемые качественные свойства объекта Q не являются одинаковыми для всех μ .

В нашем случае таким объектом Q является фибоначчиевая скорость света $c = c(\psi)$, зависимая от параметра самоорганизации ψ , а бифуркационным значением является $\psi = 0$, а само же существование такой бифуркации называется в Космологии *Большим Взрывом*.

Период 3. Отсутствие скорости света ($0 < \psi < 2$)

В этот период фибоначчиевая скорость света c, как вещественное число, не существует, так как подкоренное выражение в формуле (3.32) является отрицательным. Поэтому фибоначчиевая скорость света $c = c(\psi)$, согласно формуле (3.32), есть чисто мнимая функция, имеющая вид:

$$\overline{c} = \overline{c}(\psi) = i \left| \overline{c}(\psi) \right|, \quad \left| \overline{c}(\psi) \right| = \sqrt{\frac{sFs(\psi)}{sFs(\psi-2)}} \quad (3.35)$$

где $i = \sqrt{-1}$ - мнимая единица.

Период 4. Появление бесконечно большой фибоначчиевой скорости света ($\psi = 2$)

Эта вторая бифуркация связана с тем, что в момент, когда параметр самоорганизации $\psi = 2$, для фибоначчиевой скорости света \overline{c} осуществляется переход от чисто мнимой к бесконечно большой величине такой, что $\overline{c}(\psi > 2)$ - вещественные числа.

Период 5. Современный период ($2 < \psi < +\infty$)

Этот период характеризуется *стабильностью существования* и после некоторого периода *релаксации* (*переходного периода*) фибоначчиевая скорость света c падает от бесконечно больших значений до величин, близких к золотой пропорции $\tau \approx 1.61803$. При $\Psi \to +\infty$ коллапса не наблюдается, так как $c(\Psi) \to \tau$.

Метрическая форма. При $\psi < 0$ и $\psi > 2$ плоскость $L^2 = (\zeta, x_1)$ можно снабдить знакопеременной метрической формой Минковского

$$(ds)^{2} = (\bar{c}(\psi))^{2} (d\zeta)^{2} - (dx_{1})^{2} , \qquad (3.36)$$

инвариантной относительно собственного преобразования Фибоначчи Лоренца (3.27), поскольку при $\psi < 0$ и $\psi > 2$ имеем $\bar{c}(\psi) > 0$ и, следовательно, $(\bar{c}(\psi))^2 > 0$.

Поэтому при $\psi < 0$ и $\psi > 2$ плоскость $L^2 = (\zeta, x_1)$ является плоскостью Минковского R_1^2 с координатной системой $K = (\xi, \chi_1)$.

При бифуркационных значениях $\psi = 0$ и $\psi = 2$ метрика (3.36) имеет особенности.

Далее, поскольку при $0 < \psi < 2$ фибоначчиевая скорость света $c = c(\psi)$ как вещественное число не существует (см. формулу (3.35), то метрическую форму на плоскости $L^2 = (\zeta, x_1)$, инвариантную относительно преобразования(3.27), вводить не имеет смысла.

Связь собственных матриц Фибоначчи-Лоренца $\Omega = \Omega(\psi)$ с золотыми матрицами $Q_0 = Q_0(x)$ А.П. Стахова. Для того, чтобы сравнить симметричную собственную матрицу Фибоначчи- Лоренца $\Omega = \Omega(\psi)$ вида (3.26) с золотой кососимметричной матрицей $Q_0 = Q_0(x)$ А.П. Стахова вида (1.35) [7], положим в матрице (3.26) параметр ψ -1=x. Тогда матрицы $\Omega = \Omega(x)$ и $Q_0 = Q_0(x)$ принимают вид:

$$\Omega(x) = \begin{pmatrix} cFs(x) & sFs(x-1) \\ sFs(x+1) & cFs(x) \end{pmatrix}, \quad Q_0(x) = \begin{pmatrix} cFs(x+1) & sFs(x) \\ sFs(x) & cFs(x-1) \end{pmatrix}.$$
(3.37)

Отсюда получаем, что при любом вещественном х существует матрица

$$A = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}, \quad det A = 1$$
(3.38)

такая, что

$$\Omega(x) = AQ_0(x) . \tag{3.39}$$

Нормированная относительная фибоначчиевая скорость. Согласно формуле (3.20), для собственных двумерных преобразований Лоренца (3.5) на плоскости Минковского $R_2^1 = (x_0 = ct, x_1)$ была введена безразмерная нормированная относительная скорость \bar{v} , имеющая вид:

$$\overline{v} = \frac{sh(\theta)}{ch(\theta)} = th(\theta), |\overline{v}| < 1.$$

После перехода от собственных преобразований Лоренца (3.5) к собственным преобразованиям Фибоначчи-Лоренца (3.27) по формулам (3.31), получаем соотношение

$$\bar{v} = \bar{v}(\theta) = \frac{sh(\theta)}{ch(\theta)} = th(\theta) = \frac{1}{\bar{c}(\psi)} \frac{sFs(\psi)}{cFs(\psi-1)} = \frac{V(\psi)}{\bar{c}(\psi)},$$
(3.40)

где безразмерную величину

$$\overline{V} = \overline{V}(\psi) = \frac{sFs(\psi)}{cFs(\psi-1)}$$
(3.41)

назовём нормированной скоростью движения инерциальной системы $K' = (\xi' x_1')$ относительно системы $K = (\xi, x_1)$ вдоль оси x_1 преобразования Фибоначчи-Лоренца (3.27), или, для краткости, нормированной фибоначчиевой относительной скоростью.

Введём для удобства следующие обозначения:

$$n=sFs(\psi), m=cFs(\psi-1), p=sFs(\psi-2),$$
 (3.42)

где $\psi < 0$ или $\psi > 2$.

Тогда условия (1.12),(1.13),(3.32),(3.41) переписываются в виде:

$$\overline{V} = \overline{V}(\psi) = \frac{n}{m}, \ \overline{c} = \overline{c}(\psi) = \sqrt{\frac{n}{p}}, \ m^2 - np = 1, \ n = m + p.$$
(3.43)

Отсюда непосредственно получаем важные соотношения:

$$n = sFs(\psi) = \frac{\overline{V}}{\sqrt{1 - \left(\frac{\overline{V}}{\overline{c}}\right)^2}}, \quad m = cFs(\psi - 1) = \frac{1}{\sqrt{1 - \left(\frac{\overline{V}}{\overline{c}}\right)^2}}, \quad p = sFs(\psi - 2) = \frac{\overline{V}}{\left(\overline{c}\right)^2 \sqrt{1 - \left(\frac{\overline{V}}{\overline{c}}\right)^2}}.$$
 (3.44)

Подставим (3.44) в соотношения $m^2 -np=1$, n=m+p, взятые из (3.43), тогда получаем, что \bar{c} зависит от \bar{V} и эта зависимость имеет вид

$$\overline{c} = \overline{c}(\overline{V}) = \frac{1}{\sqrt{1 - \frac{1}{\overline{V}}}},$$
(3.45)

при этом на \overline{V} накладываются следующие ограничения:

$$-\tau^{-1} < -\overline{c} < \overline{V} < 0, \quad ecnu \ \psi < 0$$

$$1 < \overline{V} < \tau < \overline{c} < +\infty, \quad ecnu \ \psi > 2.$$
(3.46)

6. 2. Несобственные двумерные преобразования Фибоначчи-Лоренца

В пункте 6 на плоскости Минковского $R_2^1 = (x_0 = ct, x_1)$ наряду с собственными преобразованиями Лоренца (3.5) рассматривались несобственные преобразования Лоренца (3.9).

Поэтому имеет смысл рассматривать также *несобственные преобразования Фибоначчи-Лоренца*, пользуясь методикой, аналогичной пункту 6 с соответствующей модификацией.

Согласно соотношению (3.19), для несобственных преобразований Лоренца (3.9) нормированная несобственная относительная скорость v = v/c удовлетворяла условию:

$$\overline{v} = \frac{ch(\theta)}{sh(\theta)} = cth(\theta), \ \left|\overline{v}\right| > 1.$$
(3.47)

Перепишем также соотношения (3.9) в виде:

$$(ct) = sh(\theta)(ct') + ch(\theta)x'_{1}$$

$$x_{1} = ch(\theta)(ct') + sh(\theta)x'_{1}$$
(3.48)

Положим $c = c(\psi) = c(\psi) c_0$, где ψ , c_0 имеют тот же смысл, что и в пункте 6, а параметр $\underline{c} = \underline{c}(\psi)$, который является безразмерной величиной и будет конкретизирован ниже, - назовем несобственной нормированной фибоначчиевой скоростью света в пустоте, или, сокращённо, несобственной фибоначчиевой скоростью света.

Обозначим через $\xi = c_0 t$, $\xi' = c_0 t'$ величины, имеющие размерность [*м*].

Тогда (3.48) перепишется в виде $() \sum_{i=1}^{n} (i) \sum_{j=1}^{n} (i) \sum_{j=1}^$

$$\underline{c}(\psi)\zeta = \underline{c}(\psi)sh(\theta)\zeta' + ch(\theta)x_1$$

$$x_1 = \underline{c}(\psi)ch(\theta)\zeta' + sh(\theta)x_1'$$
(3.49)

Разделим первую строчку в (3.49) на <u>с</u>(ψ), тогда получим преобразование вида:

$$\begin{pmatrix} \xi \\ \chi_1 \end{pmatrix} = \begin{pmatrix} sh(\theta) & \frac{ch(\theta)}{\underline{c}(\psi)} \\ \underline{c}(\psi)sh(\theta) & sh(\theta) \end{pmatrix} \begin{pmatrix} \xi' \\ \chi'_1 \end{pmatrix}.$$
(3.50)

Преобразованию (3.50) соответствует матрица вида:

$$\underline{\Omega} = \begin{pmatrix} sh(\theta) & \frac{ch(\theta)}{\underline{c}(\psi)} \\ \underline{c}(\psi)ch(\theta) & sh(\theta) \end{pmatrix}.$$
(3.51)

Для того, чтобы конкретизировать параметр $\underline{c}(\psi)$, представим матрицу $\underline{\Omega}$ в таком виде, чтобы её элементами были введённые в [6] А.П. Стаховым и Б.Н. Розиным симметричные гиперболические функции Фибоначчи sFs , cFs :

$$\underline{\Omega} = \begin{pmatrix} sFs(\psi-1) & cFs(\psi-2) \\ cFs(\psi) & sFs(\psi-1) \end{pmatrix}.$$
(3.52)

Матрицу<u>Ω</u> вида (3.52) назовём *несобственной двумерной матрицей* Фибоначчи – *Лоренца*, а преобразование

$$\begin{pmatrix} \xi \\ \chi_1 \end{pmatrix} = \begin{pmatrix} sFs(\psi-1) & cFs(\psi-2) \\ cFs(\psi) & sFs(\psi-1) \end{pmatrix} \begin{pmatrix} \xi' \\ \chi'_1 \end{pmatrix}$$
(3.53)

несобственным двумерным преобразованием Фибоначчи -Лоренца.

Определитель матрицы (3.52) равен

$$det \ \underline{\Omega} = -1, \tag{3.54}$$

при этом, согласно первому соотношению в (1.13), получаем равенство

$$cFs(\psi) = sFs(\psi - 1) + cFs(\psi - 2).$$
(3.55)

Поскольку матрицы (3.51) и (3.52) равны между собой, то их соответствующие элементы совпадают, откуда получаем соотношения:

$$\begin{cases} sh(\theta) = sFs(\psi-1), \\ \frac{ch(\theta)}{\underline{c}(\psi)} = cFs(\psi-2), \\ (\underline{c}(\psi)ch(\theta) = cFs(\psi) . \end{cases}$$
(3.56)

Отсюда следуют соотношения:

$$\begin{cases} sh(\theta) = sFs(\psi-1), \\ ch(\theta) = \underline{c}(\psi) \ cFs(\psi-2) = \frac{cFs(\psi)}{\underline{c}(\psi)}. \end{cases}$$
(3.57)

Но тогда из второго соотношения в формулах(3.57) получаем, что несобственная фибоначчиевая скорость света $c(\psi)$ имеет вид:

$$\underline{c}(\psi) = \sqrt{\frac{cFs(\psi)}{cFs(\psi-2)}} .$$
(3.58)

Из первой формулы в соотношении (3.57) получаем функцию

$$\theta = \theta(\psi) = \operatorname{Arcsh} z = \ln\left[z + \sqrt{1 + z^2}\right], z = sFs(\psi - 1).$$
(3.59)

Функция (3.59) определена при всех ψ ($-\infty < \psi < +\infty$) и везде является непрерывной и взаимно однозначной. В таблице 17 представлены численные значения функции $\theta = \theta(\psi)$ при ($-\infty < \psi < +\infty$), полученные по формуле (3.59).

Таблица 17. Численные значения функции $\theta = \theta(\psi)$, полученные по формуле (3.59).

Ψ	- ∞	-3	-2	-1	0	1	2	3	4	5	+∞
θ	-∞	-1.8184	-1.3450	-0.8813	-0.4335	0	0.4335	0.8813	1.3450	1.8184	$+\infty$

На рис.4 совмещены два графика: график фибоначчиевой скорости света $c = c(\psi)$ (*жирная чёрная линия*) и график несобственной фибоначчиевой скорости света $c(\psi)$ (*тонкая чёрная линия*) в зависимости от параметра самоорганизации ψ , полученных, соответственно, по формулам (3.32) и (3.58).

Рисунок 4. График фибоначчиевой скорости света $c = c(\psi)$ (жирная чёрная линия) для собственных преобразований Фибоначчи -Лоренца и график несобственной фибоначчиевой скорости света $c = c(\psi)$ (тонкая чёрная линия) для несобственных преобразований Фибоначчи-Лоренца в зависимости от параметра самоорганизации ψ . Момент Большого взрыва обозначен символом

Космологическая интерпретация. График несобственной фибоначчиевой скорости света $\underline{c} = \underline{c}(\psi)$ имеет две горизонтальные асимптоты: $\underline{c} = \tau \approx 1.61803$ при $\psi \to +\infty$ и $\underline{c} = \tau^{-1} \approx 0.61803$ при $\psi \to -\infty$ и при изменении параметра самоорганизации ψ от бесконечно далёкого прошлого ($\psi = -\infty$) до бесконечно далёкого будущего ($\psi = +\infty$) несобственная фибоначчиевая скорость света $\underline{c}(\psi)$ непрерывно возрастает, оставаясь в пределах $0.61803 < \underline{c}(\psi) < \tau \approx 1.61803$.

Таким образом, по аналогии с *двухцепочной структурой* генетического кода для молекул ДНК, являющихся носителями нуклеотидов, для двумерных преобразований Фибоначчи-Лоренца мы как бы также имеем *двухцепочную структуру*, но только для фибоначчиевых скоростей света $c = c(\psi)$ и $c = c(\psi)$, одна из которых, а именно, фибоначчиевая скорость света $c = c(\psi)$, отвечает за *«физические свойства мироздания»*, претерпевая при эволюционном развитии всевозможные катаклизмы, а другаянесобственная фибоначчиевая скорость света $c = c(\psi)$, *не являясь носителем физических свойстве*, играет как бы роль *страховочной цепи* для $c = c(\psi)$, и не претерпевает никаких катаклизмов.

Как будет показано ниже, будет установлена более глубокая аналогия между двухцепочной структурой ДНК и двухцепочной структурой фибоначчиевых скоростей света.

Метрическая форма для несобственных преобразований Фибоначчи-Лоренца. При любых - $\infty < \psi < +\infty$ в случае несобственных преобразований Фибоначчи-Лоренца (3.53) плоскость $L^2 = (\xi, x_1)$ можно снабдить метрикой Минковского

$$(ds)^2 = (\underline{c}(\psi))^2 (d\xi) - (dx_1)^2,$$
 (3.60)

антиинвариантной относительно преобразования (3.53), то есть

$$(ds)^{2} = (\underline{c}(\psi))^{2} (d\xi)^{2} - (dx_{1})^{2} = -(ds')^{2} = -(\underline{c}(\psi))^{2} (d\xi')^{2} + (dx'_{1})^{2} , \qquad (3.61)$$

но инвариантной относительно преобразования

$$\begin{pmatrix} \xi \\ x_1 \end{pmatrix} = \begin{pmatrix} sFs(\psi-1) & cFs(\psi-2) \\ cFs(\psi) & sFs(\psi-1) \end{pmatrix}^2 \begin{pmatrix} \xi'' \\ x''_1 \end{pmatrix},$$
 (3.62)

то есть

$$(ds)^{2} = \left(\underline{c}(\Psi)\right)^{2} \left(d\zeta\right)^{2} - \left(dx_{1}\right)^{2} = \left(ds''\right)^{2} = \left(\underline{c}(\Psi)\right)^{2} \left(d\zeta\right)^{2} \quad (dx''_{1})^{2}$$
(3.63)

Связь несобственных матриц Фибоначчи-Лоренца $\underline{\Omega} = \underline{\Omega}(\psi)$ с золотыми матрицами $Q_1 = Q_1(x)$ А.П. Стахова. Для того, чтобы сравнить *симметричную* несобственную матрицу Фибоначчи-Лоренца $\underline{\Omega} = \underline{\Omega}(\psi)$ вида (3.52) с золотой *кососимметричной матрицей* $Q_1 = Q_1(x)$ А.П. Стахова вида (1.35) [7], положим в матрице (3.52) параметр ψ -1 =*x*. Тогда матрицы $\underline{\Omega} = \underline{\Omega}(x)$ и $Q_1 = Q_1(x)$ имеют вид:

$$\underline{\Omega}(x) = \begin{pmatrix} sFs(x) & cFs(x-1) \\ cFs(x+1) & sFs(x) \end{pmatrix}, Q_1(x) = \begin{pmatrix} sFs(x+1) & cFs(x) \\ cFs(x) & sFs(x-1) \end{pmatrix}.$$
(3.64)

Отсюда получаем, что при любом вещественном *x* существует матрица *A* вида (3.38), такая, что

$$\underline{\Omega}(x) = A Q_1(x). \tag{3.65}$$

Нормированная несобственная относительная фибоначчиевая скорость.

Согласно формуле (3.47), для несобственных двумерных преобразований Лоренца (3.9) на плоскости Минковского $R_1^2 = (x_0 = ct, x_1)$ нормированная несобственная относительная скорость $\bar{v} = v/c$ удовлетворяет условию $\bar{v} = \frac{ch(\theta)}{sh(\theta)} = cth(\theta), |\bar{v}| > 1.$

После перехода от несобственных преобразований Лоренца (3.9) к несобственным преобразованиям Фибоначчи-Лоренца (3.50) по формулам (3.57), получаем соотношение

$$\bar{v}(\theta) = \frac{ch(\theta)}{sh(\theta)} = cth(\theta) = \frac{cFs(\psi)}{\underline{c}(\psi)sFs(\psi-1)} = \frac{\underline{V}(\psi)}{\underline{c}(\psi)},$$
(3.66)

где безразмерную величину

$$\underline{V} = \underline{V}(\psi) = \frac{cFs(\psi)}{sFs(\psi - 1)}$$
(3.67)

назовём нормированной несобственной скоростью движения инерциальной системы $K' = (\xi', x_1')$ относительно системы $K = (\xi, x_1)$ вдоль оси x_1 несобственного преобразования Фибоначчи-Лоренца (3.50), или, для краткости, нормированной несобственной фибоначчиевой относительной скоростью.

Введём для удобства следующие обозначения:

$$n=cFs(\psi), \ \underline{m}=sFs(\psi-1), \ \underline{p}=cFs(\psi-2),$$
(3.68)

где - ∞< ψ<+∞

Тогда условия (1.12),(1.13),(3.58),(3.67) переписываются в виде:

$$\underline{V} = \underline{V}(\psi) = \frac{n}{\underline{m}}, \underline{c} = \underline{c}(\psi) = \sqrt{\frac{n}{\underline{p}}}, \ \underline{m}^2 - n\underline{p} = -1, n = \underline{m} + \underline{p}.$$
(3.69)

Отсюда непосредственно получаем соотношение

 \underline{C}

$$= \underline{c} \ (\underline{V}) = \frac{1}{\sqrt{1 - \frac{1}{\underline{V}}}} , \ |\underline{V}| > \underline{c} , \qquad (3.70)$$

при этом *n*, <u>m</u>, *p* имеют вид:

$$\underline{n} = cFs(\psi) = \frac{|\underline{V}|}{\sqrt{\left(\frac{\underline{V}}{\underline{c}}\right)^2 - 1}}, \ \underline{m} = sFs(\psi - 1) = \frac{sign(\underline{V})}{\sqrt{\left(\frac{\underline{V}}{\underline{c}}\right)^2 - 1}}, \ \underline{p} = cFs(\psi - 2) = \frac{|\underline{V}|}{\left(\underline{c}\right)^2 \sqrt{\left(\frac{\underline{V}}{\underline{c}}\right)^2 - 1}}.$$
(3.71)

7. Взаимосвязь между резонансной структурой генетического кода при λ = 1 (наилучший показатель гармонии) и преобразованиями Фибоначчи-Лоренца

Представим преобразования Фибоначчи – Лоренца в другом виде, исключив параметр самоорганизации ψ и взяв в качестве независимой переменной параметр *n*, который в дальнейшем будем идентифицировать с длинами отрезков генетического кода.

Собственные преобразования Фибоначчи-Лоренца. Матрица (3.26) собственных преобразований Фибоначчи – Лоренца в этом случае имеет вид:

$$\Omega = \begin{pmatrix} m & p \\ n & m \end{pmatrix}, \tag{3.72}$$

(3.74)

где, в силу (3.43), получаем соотношения:

$$m^2 - np = 1, m = n - p, \ \bar{c} = \bar{c}(n) = \sqrt{\frac{n}{p}}.$$
 (3.73)

Для идентификации с генетическими кодами рассмотрим ситуацию, когда $n \ge 3, n > m > p > 0.$

Тогда из (3.73) получаем соотношения:

$$n \ge 3$$
, $m = n - p$, $p = \frac{3n - \sqrt{5n^2 + 4}}{2}$, $\bar{c} = \bar{c}(n) = \sqrt{\frac{n}{p}}$. (3.75)

Несобственные преобразования Фибоначчи-Лоренца. Матрица (3.51) *несобственных преобразований Фибоначчи-Лоренца* в этом случае имеет вид:

$$\underline{\Omega} = \begin{pmatrix} \underline{m} & \underline{p} \\ n & \underline{m} \end{pmatrix}, \tag{3.76}$$

где, в силу (3.69), получаем соотношения:

$$\underline{m}^{2} - n \underline{p} = -1, \quad \underline{m} = n - \underline{p}, \quad p = \frac{3n - \sqrt{5n^{2} - 4}}{2}, \quad \underline{c} = \underline{c}(n) = \sqrt{\frac{n}{\underline{p}}}. \quad (3.77)$$

Для идентификации с генетическими кодами рассмотрим ситуацию, когда

$$n \ge 3, n > \underline{m} \ge \underline{p} > 0, \quad \underline{c} = \underline{c}(n) = \sqrt{\frac{n}{\underline{p}}}.$$

$$(3.78)$$

Графики фибоначчиевой скорости света $c = c(n) = \sqrt{\frac{n}{p}}$ (*жирная чёрная линия*) и несобственной фибоначчиевой скорости света $c = c(n) = \sqrt{\frac{n}{p}}$ (*тонкая чёрная линия*) при $n \ge 0$ представлены на рис. 5. Эти графики имеют две асимптоты: вертикальную асимптоту n=1 для графика c = c(n) и горизонтальную асимптоту $c = c = \tau \approx 1.61803$, общую для графиков c = c(n) и c = c(n).

Рисунок 5. График фибоначчиевой скорости света c = c(n) (жирная чёрная линия) и несобственной фибоначчиевой скорости света $\underline{c} = \underline{c}(n)$ (тонкая чёрная линия) в зависимости от параметра $n \ge 0$.

В таблице 18 представлены в зависимости от $n \ge 3$ численные значения параметров m=m(n), p=p(n), c = c(n), полученных по формулам (3.75) для собственных преобразований Фибоначчи-Лоренца, и параметров $\underline{m} = \underline{m}(n), \underline{p} = \underline{p}(n), \underline{c} = \underline{c}(n),$ полученных по формулам (3.77) для несобственных преобразований Фибоначчи-Лоренца.

Таблица 18. Численные значения *n*, m=m (*n*), p=p(n), $\bar{c}=\bar{c}(n)$ для собственных преобразований Фибоначчи-Лоренца и $\underline{m} = \underline{m}(n)$, $\underline{p} = \underline{p}(n)$, $\underline{c} = \underline{c}(n)$ для несобственных преобразований Фибоначчи-Лоренца.

п	т	р	$\overline{c} = \overline{c}(n)$	п	<u>m</u>	<u>p</u>	$\underline{c} = \underline{c}(n)$
3	2	1	1.73205	3	1.70156	1.29844	1.52002
4	2.58258	1.41742	1.67989	4	2.3589	1.6411	1.56121
5	3.17891	1.82109	1.65699	5	3	2	1.58114
6	3.78233	2.21767	1.64485	6	3.63325	2.36675	1.59221
7	4.38987	2.61013	1.63764	7	4.26209	2.73791	1.59897
8	5	3	1.63299	8	4.88819	3.11181	1.60339
9	5.61187	3.38813	1.62983	9	5.51249	3.48751	1.60644
10	6.22497	3.77503	1.62757	10	6.13553	3.86447	1.60863
100	61.8079	38.1921	1.61813	100	61.7989	38.2011	1.61794
1000	618.034	381.966	1.61803	1000	618.034	381.966	1.61803
+∞	+∞	+∞	$\tau \approx 1.61803$	+ ∞	+∞	+ ∞	$\tau \approx 1.61803$

Будем говорить, что нормированные фибоначчиевые скорости света c = c(n) и <u>c</u> = <u>c</u>(n) комплементарны (обозначение $c = c(n) \Leftrightarrow c = c(n)$), если они получены при одних и тех же n по формулам (3.75) и (3.77).

Запишем далее различные соотношения между элементами и параметрами собственных и несобственных преобразований Фибоначчи-Лоренца в аналитическом виде.

Представление элементов *m*, *p* и параметра c собственных преобразований Фибоначчи-Лоренца через элемент *n*

$$\begin{cases} n \ge 3, \quad m = m(n) = \frac{-n + \sqrt{5n^2 + 4}}{2} = \tau^{-1}n + \overline{\omega}(n) ,\\ p = p(n) = \frac{3n - \sqrt{5n^2 + 4}}{2} = \tau^{-2}n - \overline{\omega}(n),\\ \overline{c} = \overline{c}(n) = \sqrt{\frac{2n}{3n - \sqrt{5n^2 + 4}}} = \tau + \overline{\alpha}(n),\\ \overline{c} = \overline{c}(n = 3) = \sqrt{3} \approx 1.73205 , \ \overline{c} = \overline{c}(n \to +\infty) \to \tau \approx 1.61803, \end{cases}$$
(3.79)

где

$$\begin{cases} \overline{\omega}(n) = \frac{n}{2} \left[\sqrt{5 + \frac{4}{n^2}} - \sqrt{5} \right] \to 0 \ npu \ n \to +\infty, \qquad (3.80)$$
$$\overline{\alpha}(n) = \tau \left[\frac{1}{\sqrt{1 - \frac{\tau^2 \overline{\omega}(n)}{n}}} \right] - 1 \to 0 \ npu \ n \to +\infty. \end{cases}$$

Представление элементов *n,m,p* собственных преобразований Фибоначчи-Лоренца через параметр \bar{c}

1.61802
$$\approx \tau < \bar{c} \le \sqrt{3} \approx 1.73205$$
,
 $n = n(\bar{c}) \frac{(\bar{c})^2}{\sqrt{(\bar{c})^4 - 3(\bar{c})^2 + 1}}$, (3.81)
 $m = m(\bar{c}) \frac{(\bar{c})^2 - 1}{\sqrt{(\bar{c})^4 - 3(\bar{c})^2 + 1}}$,
 $p = p(\bar{c}) = \frac{1}{\sqrt{(\bar{c})^4 - 3(\bar{c})^2 + 1}}$.

Представление элементов <u>m</u>, <u>p</u> и параметра <u>C</u> несобственных преобразований Фибоначчи-Лоренца через элемент *n*

$$\begin{cases} n \ge 3, \quad \underline{m} = \underline{m}(n) = \frac{-n + \sqrt{5n^2 - 4}}{2} = \tau^{-1}n + \underline{\omega}(n) ,\\ \underline{p} = \underline{p}(n) = \frac{3n - \sqrt{5n^2 - 4}}{2} = \tau^{-2}n - \underline{\omega}(n) ,\\ \underline{c} = \underline{c}(n) = \sqrt{\frac{2n}{3n - \sqrt{5n^2 - 4}}} = \tau + \underline{\alpha}(n) ,\\ \underline{c} = \underline{c}(n = 3) = \sqrt{\frac{6}{9 - \sqrt{41}}} \approx 1.52002, \ \underline{c}(n \to +\infty) \to \tau \approx 1.61803, \end{cases}$$
(3.82)

где

$$\begin{cases} \underline{\omega}(n) = \frac{n}{2} \left[\sqrt{5 - \frac{4}{n^2}} - \sqrt{5} \right] \to 0 \quad \text{при} \quad n \to +\infty, \qquad (3.83) \\ \underline{\alpha}(n) = \tau \left[\frac{1}{\sqrt{1 - \frac{\tau^2 \underline{\omega}(n)}{n}}} \right] \to 0 \quad \text{при} \quad n \to +\infty. \end{cases}$$

Представление элементов *n*, <u>*m*</u>, <u>*p*</u> несобственных преобразований Фибоначчи- Лоренца через параметр <u>*C*</u>

$$1.52002 \approx \sqrt{\frac{6}{9 - \sqrt{41}}} \leq \underline{c} < \tau \approx 1.61803$$

$$n = n(\underline{c}) = n = n(\underline{c}) = \frac{(\underline{c})^2}{\sqrt{-\left[(\underline{c})^4 - 3(\underline{c})^2 + 1\right]}},$$

$$m = m(\underline{c}) = \frac{(\underline{c})^2 - 1}{\sqrt{-\left[(\underline{c})^4 - 3(\underline{c})^2 + 1\right]}},$$

$$p = p(\underline{c}) = \frac{1}{\sqrt{-\left[(\underline{c})^4 - 3(\underline{c})^2 + 1\right]}}.$$
(3.84)

Поэтому условие комплементарности для одних и тех же *п* имеет вид:

$$\begin{cases} n = \frac{\left(\bar{c}\right)^2}{\sqrt{\left(\bar{c}\right)^4 - 3\left(\bar{c}\right)^2 + 1}} = \frac{\left(\underline{c}\right)^2}{\sqrt{-\left[\left(\underline{c}\right)^4 - 3\left(\underline{c}\right)^2 + 1\right]}}, \quad (3.85) \\ 1.61802 \approx \tau < \bar{c} \le \sqrt{3} \approx 1.73205, \ 1.52002 \approx \sqrt{\frac{6}{9 - \sqrt{41}}} \le \underline{c} < \tau \approx 1.61803 \quad , \ 3 \le n < +\infty. \end{cases}$$

Здесь и в дальнейшем, если не оговорено отдельно, будем рассматривать натуральные числа $n = \overline{3,+\infty}$, которые одновременно обладают двумя разными смысловыми понятиями (назовём это явление двуединством универсального генетического кода и фибоначчиевого света): 1).Числа $n=\overline{3,+\infty}$ являются *длинами отрезков* универсального бесконечного генетического кода \overline{K}_{λ} , для которого *показатель гармонии* λ является наилучшим, то есть $\lambda = 1$. Этот код является *стандартным представителем* в генетическом классе Ω_1 и с этим кодом сравниваются все реальные генетические коды, у которых показатель гармонии $\lambda = 1$. Алгоритм нахождения теоретических частот \overline{X}_1 , \overline{X}_2 , \overline{X}_3 , \overline{X}_4 такого универсального генетического кода приведен в соотношениях (2.17)-(2.19).

2). Числа $n=3,+\infty$ являются, соответственно, нижними левыми элементами матриц $\Omega = \begin{pmatrix} m & p \\ n & m \end{pmatrix}, \Omega = \begin{pmatrix} m & p \\ n & m \end{pmatrix}$ для собственных или несобственных преобразований Фибоначчи –Лоренца $n=sFs(\psi)$, а для несобственных преобразований Фибоначчи-Лоренца $n=cFs(\psi)$, где ψ -параметр самоорганизации. Поэтому одному и тому же n ($n \ge 3$) для собственных и несобственных и несобственных преобразований Фибоначчи-Лоренца ψ .

В непрерывной ситуации будем считать, что кривые c = c(n) и c = c(n) определены при вещественных значениях $3 \le n < +\infty$. Начальные точки этих кривых обозначим, соответственно, через A и B.

Тогда точка A соответствует значению $\bar{c}(n=3) = \sqrt{3} \approx 1.73205$, а точка B соответствует значению $\underline{c}(n=3) = \sqrt{\frac{6}{9-\sqrt{41}}} \approx 1.52002$.

В этом случае для всех вещественных $n \ge 3$ фибоначчиевая скорость света c = c(n) и обратная к ней функция n=n(c) находятся из соотношений (3.79), (3.81), а несобственная фибоначчиевая скорость света c = c(n) и обратная к ней функция n=n(c) находятся из соотношений (3.82),(3.84), при этом для каждого n выполняется условие комплементарности (3.85).

Назовём фибоначчиевой световой молекулой совокупность $c(n) \bigcup c(n)$ кривых c = c(n) и c = c(n). Будем говорить, что c = c(n) есть собственная световая цель, а c = c(n) - несобственная световая цель фибоначчиевой световой молекулы.

Описанную выше ситуацию взаимно однозначных соответствий двух разных смысловых понятий (*двуединства универсального генетического кода и фибоначчиевого света*) изобразим на рисунке 6. Взаимно однозначные соответствия обозначены символом ↔.

Рисунок 6. Взаимно однозначное соответствие между универсальным генетическим кодом \overline{K}_1 с показателем гармонии $\lambda = 1$ и фибоначчиевой световой молекулой $\overline{c}(n) \bigcup \underline{c}(n)$.

Поясним вышеуказанную конструкцию взаимно однозначного соответствия между универсальным генетическим кодом и фибоначчиевой световой молекулой более подробно.

7.1. Отображение фибоначчиевой световой молекулы в универсальный генетический код

Рассмотрим множество натуральных чисел $\overline{3,+\infty}$ и для каждого такого натурального числа *n* найдём согласно формулам (3.79), (3.82) комплементарные значения

$$\overline{c_n} = \overline{c}(n) = \sqrt{\frac{2n}{3n - \sqrt{5n^2 + 4}}} \leftrightarrow \underline{c_n} = \underline{c}(n) = \sqrt{\frac{2n}{3n - \sqrt{5n^2 - 4}}}$$
(3.86)

на собственной световой цепи и несобственной световой цепи фибоначчиевой световой молекулы.

Назовём множество полученных в результате этой операции точек

$$\overline{C} = \left\{ \overline{c_3}, \overline{c_4}, ..., \overline{c_n}, ... \right\}$$
(3.87)

узловыми точками собственной световой цепи, а множество точек

$$\underline{C} = \left\{ \underline{c_3}, \underline{c_4}, \dots, \underline{c_n}, \dots \right\}$$
(3.88)

узловыми точками несобственной световой цепи фибоначчиевой световой молекулы.

Зафиксируем все эти узловые точки как на собственной, так и на несобственной световой цепи .

По каждой узловой точке $c \in C$ и или ей комплементарной точке $c \in C$, согласно формулам (3.80), (3.81), (3.83)-(3.85), однозначно находятся, соответственно, тройки элементов *n*, *m*, *p* и *n*, <u>m</u>, *p* такие, что *n* (*n* \geq 3)- целое число, а числа

т,*p*, <u>*m*</u>, *p* не обязательно целые, удовлетворяют соотношениям:

Узловые точки $c \in \overline{C}$ собственной световой цепи

$$\begin{cases} n = \frac{\left(\overline{c}\right)^2}{\sqrt{\left(\overline{c}\right)^4 - 3\left(\overline{c}\right)^2 + 1}}, \quad m = \left[1 - \frac{1}{\left(\overline{c}\right)^2}\right]n, \quad p = \frac{1}{\left(\overline{c}\right)^2}n, \\ \tau^{-1}n = m - \overline{\omega}(n), \tau^{-2}n = p + \overline{\omega}(n), \\ \overline{\omega}(n) \to 0 \quad \text{при} \quad n \to +\infty \end{cases}$$
(3.89)

Узловые точки $\underline{c} \in \underline{C}$ несобственной световой цепи

$$\begin{cases}
n = \frac{(\underline{c})^2}{\sqrt{-\left[(\underline{c})^4 - 3(\underline{c})^2 + 1\right]}}, \quad \underline{m} = \left[1 - \frac{1}{(\underline{c})^2}n\right], \quad p = \frac{1}{(\underline{c})^2}n, \\
\tau^{-1}n = \underline{m} - \underline{\omega}(n), \quad \tau^{-2}n = p + \underline{\omega}(n), \\
\underline{\omega}(n) \rightarrow 0 \quad \text{при} \quad n \rightarrow +\infty.
\end{cases}$$
(3.90)

Из (3.89), (3.90) следует, что если полученные таким образом целые числа n($n \ge 3$) считать *длинами отрезков универсального генетического кода* \overline{K}_{λ} *при* $\lambda = 1$, то есть полагать $\overline{X}_1 + \overline{X}_2 + \overline{X}_3 + \overline{X}_4 = n$, где алгоритм нахождения теоретических частот $\overline{X}_1, \overline{X}_2, \overline{X}_3, \overline{X}_4$ приведен в (2.17)-(2.19) и основан на использовании операций $Round[\tau^{-1}n], Round[\tau^{-2}n]$, то в нашей ситуации из (3.89), (3.90) получаем следующие соответствия.

1). Отображение узловых точек $c \in \overline{C}$ собственной световой цепи в универсальный генетический код \overline{K}_{λ} при $\lambda = 1$.

Из (3.89) по узловым точкам $c \in \overline{C}$ находим целые $n \ (n \ge 3)$ и вещественные (не обязательно целые) m, p.

Далее для универсального генетического кода \overline{K}_{λ} при $\lambda = 1$ получаем:

$$\begin{cases} X_1^+ X_2^+ X_3^+ X_4 = n, \\ \overline{X}_2^+ \overline{X}_3^+ \overline{X}_4 = Round \left[\tau^{-1}n\right] = Round \left[m\right] - \delta(n) \\ \overline{X}_1 = Round \left[\tau^{-2}n\right] = Round \left[p\right] + \delta(n) \end{cases}$$
(3.91)

$$\begin{cases} \overline{X}_{2} + \overline{X}_{3} + \overline{X}_{4} = Round \left[\tau^{-1} n \right] \\ \overline{X}_{3} + \overline{X}_{4} = Round \left[\tau^{-1} \left(\overline{X}_{2} + \overline{X}_{3} + \overline{X}_{4} \right) \right] \\ \overline{X}_{2} = Round \left[\tau^{-2} \left(\overline{X}_{2} + \overline{X}_{3} + \overline{X}_{4} \right) \right] \end{cases}$$

$$\begin{cases} \overline{X}_{3} + \overline{X}_{4} = Round \left[\tau^{-1} \times \left(\overline{X}_{2} + \overline{X}_{3} + + \overline{X}_{4} \right) \right], \\ \overline{X}_{3} = Round \left[\tau^{-1} \times \left(\overline{X}_{3} + \overline{X}_{4} \right) \right], \\ \overline{X}_{4} = Round \left[\tau^{-2} \times \left(\overline{X}_{3} + \overline{X}_{4} \right) \right], \end{cases}$$

$$(3.92)$$

$$(3.92)$$

$$(3.92)$$

$$(3.92)$$

$$(3.93)$$

где

$$\begin{cases} \delta(n) = 0 \text{ при } n = 3,5,6,7,\dots, \\ \delta(n) = 1 \text{ при } n = 4. \end{cases}$$
(3.94)

2). Отображение узловых точек $\underline{c} \in \underline{C}$ несобственной световой цепи, комплементарных узловым точкам $c \in \overline{C}$ собственной световой цепи, в универсальный генетический код \overline{K}_{λ} при $\lambda = 1$.

В силу (3.85) находим узловые точки $c \in C$ несобственной световой цепи, комплементарные узловым точкам $c \in \overline{C}$ собственной световой цепи, и, следовательно, целые числа *n*, найденные для $c \in C$ из соотношений (3.84) и числа *n*, найденные для $\overline{c} \in \overline{C}$ из соотношений (3.81), являются одинаковыми.

Из (3.84) по каждой узловой точке $\underline{c} \in \underline{C}$, кроме уже найденного целого числа $n \ (n \ge 3)$, определяем вещественные (не обязательно целые) числа \underline{m} , p

Тогда для универсального генетического кода \overline{K}_{λ} при $\lambda = 1$ получаем для тех же самых частот $\overline{X}_1, \overline{X}_2, \overline{X}_3, \overline{X}_4$, удовлетворяющих условиям (3.91)-(3.93), в ситуации для узловых точек $c \in C$ получаем следующие соотношения:

$$\begin{cases} \overline{X}_{1} + \overline{X}_{2} + \overline{X}_{3} + \overline{X}_{4} = n, \\ \overline{X}_{2} + \overline{X}_{3} + \overline{X}_{4} = Round \left[\tau^{-1} n \right] = Round \left[m \right] \\ \overline{X}_{1} = Round \left[\tau^{-2} n \right] = Round \left[p \right] \end{cases}$$

$$(3.95)$$

Далее для нахождения частот $\overline{X}_{2}, \overline{X}_{3}, \overline{X}_{4}$ используем формулы (3.92),(3.93).

В таблице 19 для первых десяти комплементарных узловых точек собственной и несобственной световой цепи фибоначчиевой световой молекулы вычислены длины $\overline{X}_1 + \overline{X}_2 + \overline{X}_3 + \overline{X}_4 = n$ отрезков универсального генетического кода \overline{K}_{λ} при $\lambda = 1$ и указаны частоты $\overline{X}_1, \overline{X}_2, \overline{X}_3, \overline{X}_4$ нуклеотидов, соответствующие этим длинам.

Таблица 19. Отображение фибоначчиевой световой молекулы в универсальный генетический код \overline{K}_{λ} при $\lambda = 1$.Первые десять узловых точек.

комплеме	нтарность	универсальный генетический код K_{λ} при $\lambda = 1$					
С узловые точки собственной световой цепи	<u>С</u> узловые точки несобственной световой цепи	$\frac{n=\overline{X}_{1}+\overline{X}_{2}}{+\overline{X}_{3}+\overline{X}_{4}}$	\overline{X}_{1}	\overline{X}_{2}	\overline{X}_{3}	\overline{X}_{4}	
1.73205	1.52002	3	1	1	1	0	
1.67989	1.56121	4	2	1	1	0	
1.65699	1.58114	5	2	1	1	1	
1.64485	1.59221	6	2	2	1	1	
1.63764	1.59897	7	3	2	1	1	
1.63299	1.60339	8	3	2	2	1	
1.62983	1.60644	9	3	2	2	2	
1.62757	1.60863	10	4	2	2	2	
1.62591	1.61025	11	4	3	2	2	
1.62464	1.61149	12	5	3	2	2	

Будем говорить, что узловая точка $c \in \overline{C}$ собственной световой цепи и комплементарная ей узловая точка $c \in \underline{C}$ несобственной световой цепи является резонансной, если число $n = n(c) = n(\underline{c})$, определяемое по формулам (3.85), является числом Фибоначчи F_s , где $s (s \ge 4)$ – номер этого числа Фибоначчи, находимого по формуле (см. также сноску 5)

$$[s = Round\left[\frac{\ln(n\sqrt{5})}{\ln\tau}\right].$$
(3.96)

В этом случае для чисел m = m(c), p = p(c), находимых из (3.81), (3.89) и чисел $\underline{m} = \underline{m}(\underline{c})$, $\underline{p} = \underline{p}(\underline{c})$, находимых из (3.84), (3.90), выполняются соотношения:

$$Round[m] = Round[\underline{m}] = F_{s-1}, Round[p] = Round[\underline{p}] = F_{s-2}.$$
(3.97)

Отметим также два важных дополнительных свойства резонансных узловых точек, непосредственно связанных с собственной и несобственной световыми цепями.

Именно, если число n = n(c) = n(c), определяемое по формулам (3.85), является числом Фибоначчи F_s , то в случае, когда s ($s \ge 4$)-чётное, получаем соотношения:

$$\begin{cases} n = n(\overline{c}) = n(\underline{c}) = F_s , \\ m = m(\overline{c}) = F_{s-1}, \ \underline{m} = \underline{m}(\underline{c}) \neq F_{s-1}, \\ p = p(\overline{c}) = F_{s-2}, \ \underline{p} = \underline{p}(\underline{c}) \neq F_{s-2}, \end{cases}$$
(3.98)

а когда *s* (*s*>4)-*нечётное*, то получаем соотношения:

$$\begin{cases} n = n(c) = n(\underline{c}) = F_s , \\ m = m(\overline{c}) \neq F_{s-1}, \underline{m} = \underline{m}(\underline{c}) = F_{s-1}, \\ p = p(\overline{c}) \neq F_{s-2}, \underline{p} = \underline{p}(\underline{c}) = F_{s-2}. \end{cases}$$
(3.99)

Соотношения (3.98), (3.99) можно трактовать следующим образом: собственная световая цепь является носителем чётных главных резонансов $F_s - F_{s-1} - F_{s-2}$ ($s \ge 4$, s-чётное), а несобственная световая цепь является носителем нечётных главных резонансов $F_s - F_{s-1} - F_{s-2}$ ($s \ge 4$, s-чётное).

В таблице 20 для резонансных узловых точек фибоначчиевой световой молекулы вычислены резонансные длины $\overline{X}_1 + \overline{X}_2 + \overline{X}_3 + \overline{X}_4 = n$ отрезков универсального генетического кода \overline{K}_{λ} при $\lambda = 1$ и указаны частоты $\overline{X}_1, \overline{X}_2, \overline{X}_3, \overline{X}_4$ нуклеотидов, соответствующие этим длинам.

7.2. Отображение универсального генетического кода в фибоначчиевую световую молекулу

В пункте 4.3 (формулы (2.17)-(2.19) приведена конструкция бесконечного универсального генетического кода \overline{K}_{λ} при $\lambda = 1$. Эта конструкция позволяет находить теоретические частоты $\overline{X}_1, \overline{X}_2, \overline{X}_3, \overline{X}_4$ нуклеотидов *T*,*A*,*C*,*G* не только для *резонансные длин* $n = F_s(s \ge 4) = \overline{X}_1 + \overline{X}_2 + \overline{X}_3 + \overline{X}_4$ отрезков генетического кода, основанные на главном, среднем и младшем фибоначчиевых резонансах

 $F_{s} - F_{s-1} - F_{s-2}$, $F_{s-1} - F_{s-2} - F_{s-3}$, $F_{s-2} - F_{s-3} - F_{s-4}$, но и находить эти частоты для *промежуточных длин n*, отличных от чисел Фибоначчи, для чего числа Фибоначчи заменяются на числа Round [x] для специально выбранных вещественных x.

Таким образом, переходным звеном от вышеуказанного универсального генетического кода при отображении его к фибоначчиевую световую молекулу являются натуральные числа $n = \overline{3, +\infty}$.

Тогда для этой световой молекулы по каждому натуральному числу $n = \overline{3,+\infty}$ согласно соотношениям (3.82) и (3.83) находим, соответственно, узловую точку $\bar{c}_n = \sqrt{\frac{2n}{3n - \sqrt{5n^2 + 4}}}$ собственной световой цепи, и комплементарную ей узловую точку $\underline{C}_n = \sqrt{\frac{2n}{3n - \sqrt{5n^2 + 4}}}$ несобственной световой цепи фибоначчиевой световой молекулы. В результате такой операции находится *полный спектр* узловых точек для собственной световой цепи $\overline{C} = \{\overline{c_3}, \overline{c_4}, ..., \overline{c_n}, ...\}$ и комплементарный ему полный спектр узловых точек для несобственной световой цепи $\underline{C} = \{\underline{c_3}, \underline{c_4}, ..., \underline{c_n}, ...\}$ фибоначчиевой световой молекулы.⁴

В таблице 19 для $n = \overline{3,12}$ и в таблице 20 для $n = F_s$ ($s = \overline{4,12}$) (при их *прочтении* справа налево) даны численные значения комплементарных спектров узловых точек $\overline{C} = \{\overline{c_3}, \overline{c_4}, ..., \overline{c_n}, ...\}$ и $\underline{C} = \{\underline{c_3}, \underline{c_4}, ..., \underline{c_n}, ...\}$, где F_s - число Фибоначчи с номером s.

Основной вывод. Преобразования Фибоначчи-Лоренца являются носителем универсального генетического кода \overline{K}_{λ} при $\lambda = 1$.

7.3. Классические преобразования Лоренца не являются носителем универсального генетического кода.

Рассмотрим собственные преобразования Лоренца (3.5) и несобственные преобразования Лоренца (3.9).

В обеих ситуациях нормированная (эйнтшеновская) скорость света

$$\bar{c} = \sqrt{\frac{ch(\theta)}{ch(\theta)}} = \underline{c} = \sqrt{\frac{sh(\theta)}{sh(\theta)}} = 1,$$
(3.100)

и, следовательно, эта нормированная скорость света не зависит от изменения угла гиперболического поворота θ (- $\infty < \theta < +\infty$), связанного с углом фибоначчиевого поворота (параметра самоорганизации) $\psi(-\infty < \psi < +\infty)$ для преобразований Фибоначчи-_Лоренца с помощью соотношения (3.59) (см. также таблицу 17).

«Поэтому нормированная (эйнштейновская) скорость света (3.100) не зависит также и от изменения параметра n, который для собственных преобразований Фибоначчи-Лоренца равен $sFs(\psi)$, а для несобственных преобразований Фибоначчи-Лоренца равен $cFs(\psi)$, и который при целых $n \ (n \ge 3)$) играет роль длин отрезков универсального генетического кода \overline{K}_{λ} при $\lambda = 1$.

Отсюда следует, что классические преобразования Лоренца *не являются носителем* универсального генетического кода \overline{K}_{λ} при $\lambda = 1$, то есть носителем универсального генетического кода, имеющего наилучший показатель гармонии.

Обсуждение полученных результатов.

1. В 2005 году произошло замечательное событие: исполнилось сто лет со дня опубликования в 1905 году **Альбертом** Эйнштейном (1879-1955) его Специальной теории относительности (СТО). С момента появления этой теории и до настоящего времени не прекращается критика СТО и споры относительно её научного статуса. С одной стороны, критики неопровержимо доказывают несостоятельность СТО. С другой стороны, апологеты СТО с не меньшим упорством защищают эту теорию, обвиняя своих оппонентов в некомпетентности. Обе стороны приводят свои неотразимые аргументы.

СТО основывается на двух принципах: *принцип относительности и принцип независимости скорости света в пустоте от скорости источника*. Основной спор, в основном, идёт относительно второго принципа, то есть зависит или не зависит скорость света в пустоте от скорости источника света.

⁴ По этому поводу см. также формулы (3.86) –(3.88)

Весь научный мир замер сейчас в ожидании пуска в Швейцарии сверхмощного ускорителя частиц, который, возможно, позволит *замкнуть время*, и доказать возможность «путешествия во времени», хотя бы для элементарных частиц и ответить на многие вопросы как в теории СТО, так и в теории ОТО (общей теории относительности). И как всегда, научный мир снова разделился на два альтернативных лагеря: одни утверждают, что это возможно, в другие - что «этого не может быть, потому что не может быть».

В этом плане могут представить теоретический интерес работы **С.Х. Арансона и Е.В. Жужомы** [16-18], в которых в ситуации классической СТО замыкалось время и пространство, что вызвало квантование света и наложило жёсткие условия на арифметические свойства скоростей света и их спектров из допустимых относительных скоростей источников света.

Было время, когда совершенно абсурдным казалось также утверждение, что на плоскости через точку, взятую вне данной прямой , можно провести не одну (как у **Евклида** (365-300 до н. э.), а две прямые, параллельные данной прямой, и более того, бесчисленное множество прямых, не пересекающихся с данной прямой, но не параллельных с ней (Карл Фридрих Гаусс (1777-1855), Николай Иванович Лобачевский (1792-1856), Янош Больяи (1802-1860)).

Отсюда, в частности, следовало, что сумма углов любого треугольника меньше 180°, то есть, в принципе, должен был существовать треугольник, все углы которого равны нулю, что, как оказалось, в дальнейшем, действительно имеет место в модели Анри Пуанкаре (1854-1912) плоскости Лобачевского, представленной в виде единичного абсолютом (единичной круга, пополненной окружностью), играющей роль бесконечности. Прямыми (геодезическими) в модели Пуанкаре являются ДУГИ окружностей, ортогональных абсолюту, а треугольниками, все углы которых равны нулю, - несобственные треугольники, все три вершины которых лежат на абсолюте.

Итогом такого неевклидового подхода явилось создание **Георгом Фридрихом Бернхардом Риманом** (1826-1866) *римановой геометрии*, развившим математическое учение о пространстве, понятие дифференциала расстояния между элементами многообразия и учение о кривизне.

Введение обобщённых римановых пространств, частными случаями которых являются пространства Евклида и Лобачевского и так называемой геометрии Римана, открыло новые пути в развитии геометрии и нашли применение в физике (теория относительности) и других разделах естествознания.

2. В настоящей статье мы не хотим вступать в спор о правомочности или не правомочности Специальной теории относительности (СТО), основой которой являются *преобразования Лоренца*.

Мы просто хотели понять, что получится, если классические *преобразования Лоренца*, используемые в качестве преобразования координат и времени в СТО, заменить на преобразования, которым мы дали название *преобразований Фибоначчи-Лоренца* (формулы (3.27), (3.50)).

Преобразования Фибоначчи-Лоренца (3.39), (3.65) получены с помощью операции умножения слева на постоянную матрицу (3.38) введённых А.П. Стаховым в [7] золотых матриц, элементами которых являются введённые А.П.Стаховым и Б.Н. Розиным в [4] симметричный гиперболический синус и косинус Фибоначчи

$$sFs(\psi) = \frac{\tau^{\psi} - \tau^{-\psi}}{\sqrt{5}}, \ cFs(\psi) = \frac{\tau^{\psi} + \tau^{-\psi}}{\sqrt{5}},$$

где $\tau = \frac{1+\sqrt{5}}{2} \approx 1.61803$ -золотая пропорция (или, в другой терминологии, золотое сечение).

Учитывая ту роль, которую проявляет золотая пропорция (золотое сечение) τ в современном естествознании как *основа красоты и гармонии Природы*, мы вправе были ожидать появления новых эффектов по сравнению с СТО, если рассматривать преобразования *Фибоначчи-Лоренца* как преобразования координат и времени , сохраняя ту же терминологию, что и в СТО.

В результате вместо *стационарной* классической модели СТО, в которой скорость света в пустоте является постоянной величиной, мы получили *нестационарную* модель, в которой фибоначчиевая скорость света в пустоте меняется в зависимости от угла фибоначчиевого поворота ψ , который мы, возможно, несколько нескромно (да простят нас физики и биологи) назвали параметром самоорганизации.

Построив и проанализировав графики *нормированной фибоначчиевой скорости света в пустоте* для собственных и несобственных преобразований Фибоначчи-Лоренца в зависимости от ψ (рисунки 3 и 4), мы дали *«космологическую интерпретацию»* полученных результатов, употребив (опять несколько нескромно) такие термины, как *Большой взрыв* и другие, и, более того, описав теоретический сценарий развития мироздания до-, во время- и после Большого взрыва.

3. Далее мы устанановили взаимосвязь между преобразованиями Фибоначчи-Лоренца и универсальным генетическим кодом \overline{K}_{λ} при $\lambda = 1$ (наилучший показатель гармонии).

Для этого преобразования Фибоначчи-Лоренца представляются в другом виде, для чего исключается параметр самоорганизации ψ и берётся в качестве независимой переменной параметр *n*, целочисленные положительные значения которого при $n \ge 3$ в дальнейшем идентифицируется с *длинами отрезков универсального генетического кода* \overline{K}_{4} при $\lambda = 1$ (наилучший показатель гармонии).

Для собственных преобразований Фибоначчи-Лоренца полагается $n=sFs(\psi)$, а для несобственных преобразований $n=cFs(\psi)$, так что одному и тому же $n \ge 3$ соответствуют два разных значения ψ .

Соответствующие матрицы собственных и несобственных преобразований Фибоначчи–Лоренца имеют вид (3.72) и (3.76). Графики нормированных собственных и несобственных фибоначчиевых скоростей света c и c при $n \ge 0$ (нас будет интересовать случай $n \ge 3$) представлены на рисунке 5.

Мы называем фибоначчиевой световой молекулой совокупность $c(n) \bigcup c(n)$,

где $n \ge 3$, при этом c = c(n), c = c(n) названы, соответственно, *собственной* и *несобственной световой цепью*.

Будем говорить, что нормированные фибначчиевые скорости света c = c(n), $\underline{c} = \underline{c}(n)$ комплементарны, если они получены при одних и тех же *n* по формулам (3.75) и (3.77). Условие комплементарности для одних и тех же *n* задаётся формулой (3.85).

Далее устанавливается взаимно однозначное соответствие между универсальным генетическим кодом \overline{K}_{λ} при $\lambda = 1$ и фибоначчиевой световой молекулой $\overline{c}(n) \bigcup \underline{c}(n)$ как для *резонансных длин* $n = F_s$ ($s \ge 4$), где F_s –число Фибоначчи с номером *s*, так и для промежуточных длин $n \neq F_s$.

Представление о таком взаимно однозначном соответствии даёт рисунок 6 и таблицы 19 и 20, а также формулы (3.79)-(3.99). Сам факт существования такого взаимно однозначного соответствия мы назвали *двуединством универсального генетического кода* и фибоначчиевого света. Отсюда следует. что преобразования Фибоначчи-Лоренца являются носителем универсального генетического кода \overline{K}_{λ} при $\lambda = 1$.

В статье также показано, что классические преобразования Лоренца не являются носителем универсального генетического кода \overline{K}_{λ} при $\lambda = 1$.

Из вышеуказанного следует, что применение гиперболических функций Фибоначчи и золотых матриц имеет фундаментальное значение в теоретической физике и других разделах естествознания.

4. Наметим дальнейшие перспективы этих исследований:

4.1. Вышеуказанные преобразования Фибоначчи-Лоренца на плоскости \mathbb{R}^2 основаны на использовании симметричных гиперболических функций $sFs(\psi)$, $cFs(\psi)$, которые связаны с золотой пропорцией (золотым сечением) $\tau = \frac{1+\sqrt{5}}{2}$, и, следовательно, для данного случая показатель гармонии $\lambda = 1$. Представляет интерес по аналогичной схеме рассматривать на плоскости \mathbb{R}^2 λ -преобразования Фибоначчи-Лоренца, где $\lambda > 1$, основанные на использовании введённых **А.П. Стаховым** в [6] *гиперболических* λ -функций Фибоначчи $sF_{\lambda}(\psi)$, $cF_{\lambda}(\psi)$, которые связаны с золотой λ -пропорцией $\tau_{\lambda} = \frac{\lambda + \sqrt{4 + \lambda^2}}{2}$. Также представляет интерес установление взаимно-однозначного соответствия между λ -преобразования Фибоначчи-Лоренца и λ -универсальными генетическими кодами \overline{K}_{λ} , для которых показатель гармонии $\lambda > 1$, а также рассмотрение аналогов *Большого взрыва*, которые будем называть λ -*Большими взрывами*.

4.2. Исследование λ -преобразований Фибоначчи-Лоренца, где $\lambda \ge 1$ на двумерном торе и на двумерной сфере с четырьмя точками ветвления, то есть когда время и пространственная координата замкнуты.

4.3. Для динамических систем с дискретным временем (каскадов), заданных на торе и замкнутых ориентируемых поверхностях отрицательной эйлеровой характеристики, представляет интерес установление связи между топологической энтропией (мерой хаоса)

и λ -пропорциями $\tau_{\lambda} = \frac{\lambda + \sqrt{4 + \lambda^2}}{2}$, показав, что при $\lambda \ge 1$ для таких преобразований $\ln(\tau_{\lambda})$ является наименьшей топологической энтропией среди всех энтропий преобразований, гомотопных преобразованию, для которого топологическая энтропия равна $\ln(\tau_{\lambda})$.

4.4. На основе золотой фибоначчиевой гониометрии А.П. Стахова создать на плоскости, поверхностях и в пространстве *фибоначчиевую качественную теорию* динамических систем с непрерывным временем (*потоков*), дискретным временем (*каскадов*), а также слоений с особенностями. Предложение 4.4 потребует привлечения широкого круга специалистов по дифференциальным уравнениям, геометрии и топологии.

ЛИТЕРАТУРА

- 1. Воробьев Н.Н. Числа Фибоначчи. Москва, Наука, 1978.
- 2. Hoggat, V. E. Fibonacci and Lucas Numbers, Houghton-Mifflin, Palo Alto, California, 1969.
- 3. Стахов А.П., Ткаченко И.С. Гиперболическая тригонометрия Фибоначчи. Доклады Академии наук УССР, **1993**, Т. 208, № 7.

- 4. Stakhov A, Rozin B. On a new class of hyperbolic function. Chaos, Solitons & Fractals 2004, 23(2): 379-389.
- Stakhov A. Rozin B. The Golden Section, Fibonacci series and new hyperbolic models of Nature. Visual Mathematics,2006,V.8,No.3 (<u>http://members.tripod.com/vismath/pap.htm</u>)
- 6. Стахов А.П. Формулы Газале, новый класс гиперболических функций Фибоначчи и Люка и усовершенствованный метод «золотой» криптографии // «Академия Тринитаризма», М., Эл № 77-6567, публ.14098, 21.12. 2006 (<u>http://www.trinitas.ru/rus/doc/0232/004a/02321063.htm</u>)
- 7. Stakhov A. The "golden" matrices and a new kind of cryptography. Chaos, Solitons & Fractals, 2007, V.32, Issue 3, 1138-1146.
- 8. Gazale M. Gnomon. From Pharaohs to Fractals. Princeton, New Jersey: Princeton University Press, 1999 (русский перевод, 2002).
- 9. Беллман Р. Введение в теорию матриц. Москва, Наука, 1968, 367 с.
- 10. Watson J.D., Crick F. H. Molecular structure of nucleic acids . Nature, 1953, V. 171, P. 738-740.
- 11. Дубинин Н.П. Общая генетика. М.: Наука, 1986, 559 с.
- 12. Льюин Б. Гены. М.: Мир, **1987**, 544 с.
- 13. Айала Ф., Кайгер Дж. Современная генетика. М.: Мир, 1988, Т. 1-3.
- 14. Watson J.D., Crick F.H.. Genetic implications of the structure of deoxyribose nucleic acid. Nature, **1953**, V.171, P. 964-967.
- 15. Спирин А.С. Биосинтез белков, мир РНК и происхождение жизни (http:// evolution. powernet.ru/library/biosynthesis.htm).
- 16. Aranson S., Zhuzhoma E. On arithmetical and dynamical properties of Lorenz maps of the torus. ArXiv:math. DS/0404464, 26 Apr.2004,V.1, P.1-14.
- 17. Aranson S., Zhuzhoma E. On arithmetical and dynamical properties of Lorenz maps of the torus. Institut de Recherche Mathematique de Rennes. France, Prepublication 04-27. April 2004, P.1-14.
- 18. Арансон С.Х., Жужома Е.В. Арифметические и динамические свойства преобразований Лоренца на торе. Труды Средневолжского математического общества. Материалы Второй Международной научной школы «Математическое моделирование, численные методы и комплексы программ». Саранск. Россия. 2005, Т.7, №1, С.245-247.
- 19. Боднар О.Я. Золотое сечение и невклидова геометрия в природе и искусстве. Львов: «Свит», 1994.
- 20. Петухов С.В. Метафизические аспекты матричного анализа генетического кодирования и золотое сечение. Метафизика. Москва, Бином, **2006.** С. 216-250.
- Шило Н.А., Динков А.В. Фенотипическая система атомов в развитие идей Д.И.Менделеева // «Академия Тринитаризма», М., Эл № 77-6567, публ.14630, 09.11. 2007 (<u>http://www.trinitas.ru/rus/doc/0232/009a/02321073.htm</u>)
- 22. Кедров Б.М. Микроанатомия великого открытия. М.: Наука, 1970.

(Продолжение следует)