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Abstract 
 
Приведен обзор новых математических моделей Природы, основанных на золотом сечении и 
использовании гиперболических функций Фибоначчи и Люка и функции «Золотой Шофар». Также 
рассматриваются обобщенные числа Фибоначчи, обобщенные золотые пропорции, обобщенный 
принцип золотого сечения, «золотые» алгебраические уравнения, обобщенные формулы Бине, 
непрерывные функции для обобщенных чисел Фибоначчи и Люка, матрицы Фибоначчи и «золотые» 
матрицы. Статья опубликована в международном электронном журнале “Visual Mathematics”, 2006, 
Vol. 3, No. 3  http://www.mi.sanu.ac.yu/vismath/stakhov/index.html 
 
A survey of new mathematical models of Nature is presented based on the golden section and using a class of 
hyperbolic Fibonacci and Lucas functions, and a surface referred to as the Golden Shofar. Also 
considered are generalized Fibonacci numbers, generalized golden proportions,  a Generalized Principle of 
the Golden Section, golden algebraic equations, generalized Binet formulas,  generalized Lucas numbers, 
continuous functions for the generalized Fibonacci and Lucas numbers, Fibonacci matrices, and  golden 
matrices.  
 
Key words. The golden section, Fibonacci and Lucas numbers, Binet formulas, the Golden Shofar, 
hyperbolic functions, Dichotomy principle, the Golden Section principle.   
 

1. Introduction 
 

One of the major achievements of modern science is an understanding that the world of Nature is 
hyperbolic. The creator of non-Euclidean geometry was the Russian mathematician Nikolay Lobachevsky 
who derived a new geometric system based on hyperbolic functions in 1827. The need for new geometrical 
ideas became apparent in physics at the beginning of the 20th century as the result of  Einstein’s Special 
Theory of Relativity  (1905). In 1908, three years after the publication of this great work, the German 
mathematician Herman Minkowsky gave a geometrical interpretation of the Special Theory of Relativity  
based on hyperbolic ideas. 
 The theory of hyperbolic functions has developed in ways that, at first sight, does not appear to have 
any connection to hyperbolic functions. However, it does relate to the theory of Fibonacci numbers, an 
actively developing branch of modern mathematics [1-3]. In 1993, the Ukrainian mathematicians Alexey 
Stakhov and Ivan Tkachenko developed a new approach to the theory of hyperbolic functions [4]. Using the 
so-called Binet formulas, they developed a new class of hyperbolic functions called hyperbolic Fibonacci 
and Lucas functions [4, 5]. This idea was further developed in Stakhov and Rozin’s paper [6] where they 
defined a class of symmetric hyperbolic Fibonacci and Lucas functions. In Stakhov and Rozin’s article [7] a 
new surface of the second degree called the Golden Shofar was developed. The hyperbolic Fibonacci and 
Lucas functions and the Golden Shofar surface are the most important ingredients of the “golden” 
mathematical models applicable to the description of the “hyperbolic worlds” of Nature. 



Also useful for the study of such models are classes of  generalized Fibonacci numbers [8], 
generalized golden proportions [8], golden algebraic equations [9], generalized Binet formulas 
[10], generalized Lucas numbers [10],  continuous functions for the generalized Fibonacci and 
Lucas functions [11], Fibonacci matrices [12] and golden matrices [13]. These mathematical 
entities were used in algorithmic measurement theory [8, 14, 15], a new theory of real numbers 
[16], harmony mathematics [17-20], new computer arithmetics [8, 21-23], a new coding theory [24-
25], and the formulation of the Generalized Principle of the Golden Section [13].  

The main purpose of the present article is to give a brief survey of golden mathematical 
models used for describing the “hyperbolic worlds” of Nature developed by the authors in 
references [4-25].  
 
        2. The Golden Section, Fibonacci & Lucas numbers, and Binet formulas 
 
In The Elements of Euclid there is a geometric problem to divide a line segment in the extreme and mean 
ratio.  This problem is often called the golden section problem [1-3] the solution of which reduces to the 
equation,  

x2 = x + 1.       (1) 

Equation (1) has two roots; its positive root 
2

51+
=τ  is called golden proportion, golden mean, or 

golden ratio.  The following expression for the golden ratio follows from Equation (1): 
τn = τn-1 + τn-2  = τ×τn-1       (2) 

where n is an integer (either positive or negative).  
 

The Fibonacci numbers  
Fn = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …}     (3) 

are an integer sequence given by the recursive relation: 
Fn = Fn-1 + Fn-2       (4) 

with initial conditions:   
F1 = F2 = 1      (5) 

The Lucas numbers  
Ln = {1, 3, 4, 7, 11, 18, 29, 47, 76, …}     (6) 

are another integer sequence given by the recursive relation: 
Ln = Ln-1 + Ln-2       (7) 

with initial conditions:   
L1 = 1; L2 = 3       (8) 

  . Fibonacci and Lucas numbers can be extended to negative values of the index n as shown in Table 1 
Table 1.  The extended Fibonacci and Lucas numbers 

N 0 1 2 3 4 5 6 7 8 9 10 
Fn 0 1 1 2 3 5 8 13 21 34 55 
F-n 0 1 -1 2 -3 5 -8 13 -21 34 -55 
Ln 2 1 3 4 7 11 18 29 47 76 123 
L-n 2 -1 3 -4 7 -11 18 -29 47 -76 123 

  
A number of wonderful mathematical properties of the extended series Fn and Ln follow from Table 

1. For example, for odd integers n = 2k + 1 the terms of the sequences Fn and F-n coincide, i.e., F2k+1 = F-2k-1, 
while for even integers n = 2k they have opposite signs, i.e., F2k = -F-2k , whereas the reverse occurs for  the 
Lucas numbers Ln, with  L2k = L-2k and L2k+1 = -L-2k-1.  

There are many fundamental results in the modern theory of Fibonacci numbers [1-3]. In the 19th 
century the famous French mathematician Binet discovered two remarkable formulas, called the Binet 

formulas, that connect Fibonacci (Fn) and Lucas (Ln) numbers with the golden ratio 
2

51+
=τ .  
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for integer values of k. 
  
   

3. Hyperbolic Fibonacci and Lucas functions 
 

3.1. Stakhov and Tkachenko’s approach 
 
If we compare Binet formulas (9) and (10) to the classical hyperbolic functions 
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we notice a similarity. 
  In [4], the discrete variable k in formulas (9) and (10) was replaced by the continuous variable x that 
takes its values from the set of real numbers. Consequently, the following continuous functions, which are 
called the hyperbolic Fibonacci and Lucas functions, were introduced: 

The hyperbolic Fibonacci sine 
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The hyperbolic Fibonacci cosine 
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The hyperbolic Lucas sine 
ττ )12(12)( +−+ −= xxxsL     (15) 

The hyperbolic Lucas cosine 
ττ xxxcL 22)( −+=      (16) 

The connection between Fibonacci (Fn) and Lucas (Ln) numbers and the hyperbolic Fibonacci and  
Lucas functions (13)-(16) is given by the following identities: 

sF(k) = F2k;   cF(k) = F2k+1;    sL(k) = L2k+1;   cL(k) = L2k ,    (17) 
where k is an arbitrary integer. 

 
3.2. A symmetrical representation of the hyperbolic Fibonacci and Lucas functions 

(Stakhov and Rozin’s approach ) 
 
Let us compare the hyperbolic Fibonacci and Lucas functions to the classical hyperbolic functions. It is easy 
to see that, in contrast to the classical hyperbolic functions, the graph of the Fibonacci cosine is asymmetric, 
while the graph of the Lucas sine is asymmetric relative to the origin of the coordinates. This places 
restrictions on important applications of the new class of hyperbolic functions given by (13)-(16). 

Based on an analogy between Binet formulas (9) and (10) and the classical hyperbolic functions (11) 
and (12), the following definitions of the hyperbolic Fibonacci and Lucas functions were given by Stakhov 
and Rozin [6]: 

Symmetric hyperbolic Fibonacci sine 
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Symmetric hyperbolic Fibonacci cosine 
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Symmetric hyperbolic Lucas sine  
 ττ xxxsLs −−=)(       (20) 

Symmetric Lucas cosine  
 ττ xxxcLs −+=)(      (21) 

Fibonacci and Lucas numbers are determined from the symmetric Fibonacci and Lucas functions by 
the following substitutions, 
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The authors refer to the functions defined by (18)-(21) as the symmetrical representation.  
It is easy to construct graphs of the symmetric Fibonacci and Lucas functions (Fig. 1, 2).  

 

 
Figure 1.  The symmetrical Fibonacci functions Figure 2. The symmetrical Lucas functions 

 
Their graphs have a symmetric form and are similar to the graphs of the classical hyperbolic 

functions. However, at the point x=0, the symmetric Fibonacci cosine cFs(x) takes the value 
5

2)0( =cFs , 

while the symmetric Lucas cosine cLs(x) takes the value cLs(0) = 2. It is also important to note that the 
Fibonacci numbers Fn , with even indices, are values of the symmetrical Fibonacci sine, sFs(x), at even 
integer values of x and the Fibonacci numbers, with odd indices, are values of the symmetric Fibonacci 
cosine, cFs(x), at odd integers values of x. On the other hand, Lucas numbers, with the even indices, are 
values of the symmetrical Lucas cosine cLs(x) at the even integers and the Lucas numbers, with the odd 
indices, are values of the symmetrical Lucas cosine sLs(x) at the odd integers.  

The symmetric hyperbolic Fibonacci and Lucas functions are related to the classical hyperbolic 
functions by the identities: 



x)(αsh(sFs(x) ⋅= )ln
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x)(αsh(sLs(x) ⋅= )ln2 ;  x)(αch(cLs(x) ⋅= )ln2 . 
The symmetric hyperbolic Fibonacci and Lucas functions are related among each other by the   

identities: 

5
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3.3. The recursive properties of the symmetric hyperbolic Fibonacci and Lucas functions 

 
The symmetric hyperbolic Fibonacci and Lucas functions (18)-(21) are generalizations of Fibonacci and 
Lucas numbers, and therefore they have recursive properties. On the other hand, they are similar to the 
classical hyperbolic functions, and therefore they have hyperbolic properties.  
  Table 2 lists the well known identities for Fibonacci and Lucas numbers and the corresponding 
identities for the symmetrical hyperbolic Fibonacci and Lucas functions.  

Table 2. The recursive properties of the symmetrical hyperbolic Fibonacci and Lucas functions 
The identities for Fibonacci 

and Lucas numbers The identities for the symmetric hyperbolic Fibonacci and Lucas functions   

Fn+2 = Fn+1 + Fn sFs(x+2) = cFs(x+1) + sFs(x) cFs(x+2) = sFs(x+1) + cFs(x) 
Fn 2 - Fn+1 Fn-1 = (-1)n+1 [sFs(x)]2 - cFs(x+1) сFs(x-1) = -1 [cFs(x)]2 - sFs(x+1) sFs(x-1) = 1 

Ln+2 = Ln+1 + Ln sLs(x+2) = cLs(x+1) + sLs(x) cLs(x+2) = sLs(x+1) + cLs(x) 
Ln

2 - 2(-1)n = L2n [sLs(x)]2 + 2 =  cLs(2x) [cLs(x)]2 - 2 = cLs(2x) 
Fn+1 + Fn-1 = Ln cFs(x+1) + cFs(x-1) = cLs(x) sFs(x+1) + sFs(x-1) = sLs(x) 
Fn + Ln = 2Fn+1 cFs(x) + sLs(x) = 2sFs(x+1) sFs(x) + cLs(x) = 2cFs(x+1) 
For example, the famous Cassini formula [26] 

Fn 2 - Fn+1 Fn-1 = (-1)n+1,    (23) 
which is an important identity connecting three adjacent Fibonacci numbers, can be generalized to 
the symmetric hyperbolic Fibonacci functions as, 

[sFs(x)]2 - cFs(x+1) сFs(x-1) = -1    (24) 
[cFs(x)]2 - sFs(x+1) sFs(x-1) = 1,    (25) 

It is clear that the identities (24), (25) can be considered to be generalizations of the Cassini formula 
to continuous functions.  

 
3.4. The hyperbolic properties of the symmetric hyperbolic Fibonacci and Lucas functions 

 
Some of the hyperbolic properties of the symmetric hyperbolic Fibonacci and Lucas functions have 
analogues to the properties of classical hyperbolic functions as shown in Table 3.  

 
Table 3. The hyperbolic properties of the symmetric hyperbolic Fibonacci and Lucas functions 

Classical hyperbolic function  Symmetric hyperbolic Fibonacci 
function  

Symmetric hyperbolic Lucas 
function 

[ch(x)]2 – [sh(x)]2 = 1 [cFs(x)]2 -  [sFs(x)]2 = 
5
4

 [cLs(x)]2 - [sLs(x)]2 = 4 

ch(x±y) = ch(x)ch(y) ± 
 ± sh(x)sh(y) 5

2
cFs(x±y) = cFs(x)cFs(y) ±  

± sFs(x)sFs(y) 

2cLs(x±y) = cLs(x)cLs(y) ±  
± sLs(x)sLs(y) 

sh(x±y) = sh(x)ch(y) ± ch(x)sh(y) 5
2

sFs(x±y) = sFs(x)cFs(y) ±  

± cFs(x)sFs(y) 

2sLs(x±y) = sLs(x)cLs(y) ±  
± cLs(x)sLs(y) 
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For example, the most important identity for the classical hyperbolic functions,  
[ch(x)]2 – [sh(x)]2 = 1     (26) 

is written for the hyperbolic Fibonacci and Lucas functions as :  

[cFs(x)]2 -  [sFs(x)]2 = 
5
4 ,    (27) 

 [cLs(x)]2 - [sLs(x)]2 = 4.     (28) 
Thus, the above symmetric hyperbolic functions retain all of the properties of classical hyperbolic 

functions (Table 3) while exhibiting new (recursive) properties characteristic of Fibonacci and Lucas 
numbers (Table 2). Thus, unlike the classical hyperbolic functions, the new hyperbolic functions have 
discrete analogues in the form of Fibonacci and Lucas numbers. According to (22) these functions agree with 
Fibonacci and Lucas numbers when the continuous variable x takes integer values. Note that identities (24) - 
(28), as well as other identities from Tables 2 and 3 emphasize the fundamental character of the hyperbolic 
Fibonacci and Lucas functions.  

We predict that hyperbolic Fibonacci and Lucas functions will have great importance for the future 
development of Fibonacci and Lucas number theory [1-3]. They generalize Fibonacci and Lucas numbers to 
the continuous domain since Fibonacci and Lucas numbers are embedded in them. According to Table 2 each 
discrete identity for Fibonacci and Lucas numbers has its continuous analogue in the form of a corresponding 
identity for the hyperbolic Fibonacci and Lucas functions, and conversely. Therefore, the theory of the 
hyperbolic Fibonacci and Lucas functions is more general than traditional Fibonacci and Lucas number 
theory. This results in the following important consequence: due to the introduction of hyperbolic 
Fibonacci and Lucas functions, discrete Fibonacci and Lucas number theory [1-3] becomes a part of 
the continuous theory of hyperbolic Fibonacci and Lucas functions [4-7]!  The introduction of  
hyperbolic Fibonacci and Lucas functions is a new stage in the development of Fibonacci and Lucas 
number theory.   

 
3.5. Bodnar’s geometry  

 
As is well known, Fibonacci and Lucas numbers are the basis of Law of Plant Phyllotaxis [27]. According to 
this law, the number of the left and right spirals on the surface of phyllotaxis objects such as the pine cone, 
pineapple, cactus, head of sunflower, etc. are adjacent Fibonacci numbers, i.e., numbers whose ratios are, 
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These ratios characterize the symmetry of phyllotaxis. Therefore, every phyllotaxis pattern is characterized 
by one of these ratios. This ratio is called the order of symmetry. 

After observing phyllotaxis patterns on the surface of a plant, it is natural to wonder how this pattern 
is formed during the growth of the plant. This question is at the basis of the phyllotaxis puzzle which is one of 
the most intriguing problems of botany. The key to this puzzle lies in the tendency of bioforms during their 
growth to change their symmetry orders according to (29). For example, the florets of a sunflower at the 
different levels of the same stalk have different symmetry orders, that is, the older disks have symmetry 
orders further out in the sequence.  It means that during growth there is a natural change f the symmetry order 
and this change of symmetry is carried out according to the law:  
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A change of symmetry orders of phyllotaxis objects according to (30) is called dynamic symmetry 
[27]. Many scientists feel that the phyllotaxis phenomenon has more general importance. For example, it is 
Vernadsky ‘s opinion that dynamic symmetry may be applicable to general problems in biology.  

So, the phenomenon of the dynamic symmetry finds a special role in the geometry of phyllotaxis. We 
can assume that certain geometrical laws are lurking within the numerical regularity of (30). This 
phenomenon may be the secret of the phyllotaxis growth mechanism, and its expression could have great 
importance for the solution of the phyllotaxis problem. The Ukrainian researcher Oleg Bodnar has recently 
shed light on this problem [27]. Bodnar formulated a geometric theory of phyllotaxis. This theory is based on 
the hypothesis, that the geometry of phyllotaxis is hyperbolic, and the change of symmetry orders of 
phyllotaxis objects during their growth is based on the hyperbolic turn, the basic transforming motion of 
hyperbolic geometry. However, the main feature of Bodnar’s geometry lies in its use of golden hyperbolic 
functions, which agree with the symmetric hyperbolic Fibonacci and Lucas functions described in this paper 
up to constant factors. 

 
4. The Golden Shofar 

 
4.1. The quasi-sine Fibonacci function 

 
Let us consider the representation of the Binet formula for the Fibonacci numbers in the following form 
widely used in mathematics [1-3]:  

5
)1( ττ −−

=
−n nn

Fn ,    (31) 

where n is an arbitrary  integer. 
Comparing the Binet formula to the symmetric hyperbolic Fibonacci functions (19) and (20), it  

follows that the continuous functions τх and τ -х in the formulas (19) and (20) correspond to the discrete 
sequences τn and τ -n in Equation (31). Consequently it is possible to insert a continuous function into this 
function that takes the values -1 and 1 at integer values of n analogous to the alternating sequence  
(-1)n in Binet’s formula. The trigonometric function cos(πx) is the simplest such function. This suggests a  
new set of continuous functions that are connected to Fibonacci numbers.  

Definition 1. The following continuous function is called the quasi-sine Fibonacci function: 

5
)cos()( τπτ xxFF

xx −−
= .   (32) 

where,   

5
)cos()( τπτ nnFFF

nn

n

−−
== ,   (33) 

for integer values of n. 
The graph of the quasi-sine Fibonacci function passes through all points of the coordinate plane 

corresponding to the Fibonacci numbers (see Fig.3). The symmetric hyperbolic Fibonacci functions (19) and 
(20) (Fig. 1) are the envelopes of the quasi-sine Fibonacci function . 

Also the quasi-sine Fibonacci function has recursive properties similar to Fibonacci numbers [7].  
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Figure 3. The graph of the quasi-sine Fibonacci function 
 

4.2. The three-dimensional Fibonacci spiral 
It is well known that the trigonometric sine and cosine can be defined as the projection of the 

translational movement of a point on the surface of an infinite rotating cylinder with the radius 1, whose 
symmetry center coincides with the x-axis. Such a three-dimensional spiral is projected into the sine function 
on a plane and described by the complex function f(x) = cos(x) + isin(x), where 1−=i . 

If we assume that the quasi-sine Fibonacci function (32) is a projection of a three-dimensional spiral  
on some funnel-shaped surface, then analogous to the trigonometric sine, it is possible to construct a three-
dimensional Fibonacci spiral.  

Definition 2. The following function is a complex representation of the three-dimensional Fibonacci 
spiral: 

 СFF(x) = 
5

)cos( τπτ x xx −− + i
5
)sin( τπx x−

.   (34) 

 This function, by its shape, resembles a spiral that is drawn on a crater with a bent end (Fig. 4). 

 
Figure 4. The three-dimensional Fibonacci spiral  



 
 

 4.3 The Golden Shofar 
 

Consider real and imaginary parts of the complex Fibonacci spiral:  

Re[CFF(x)] = 
5

)cos( τπτ x xx −− ;   (35) 

Im[CFF(x)]  = 
5
)sin( τπx x−

.     (36) 

Designating the real part by y(x) and the imaginary part by z(x), we can get the following 
system of equations:  

y(x) - 
5

xα
 = -

5
)cos( απx x−

,              (37) 

z(x)            =   
5
)sin( απx x−

. 

Square both expressions of system (37) and add them, taking y and z as independent variables, to get 
the following curvilinear surface.  

Definition 3. The three-dimensional curved surface given by,  
2
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is called the Golden Shofar and shown in Fig. 5.. 
 

 
Figure 5. The Golden Shofar  

 
 

 The Golden Shofar looks like a horn or crater with its narrow end bent up. Translating from the 
Hebrew language, the word “Shofar” means a horn that is a symbol of power or might. The Shofar is blown 
on The Judgment Day (the Jewish New Year) and the Day of Atonement (the Yom Kippur). 

Formula (38) for the Golden Shofar can also be represented in the form: 
z2 = [cFs(x) – y][sFs(x) + y],     (39) 



where sFs(x) and cFs(x) are the symmetric hyperbolic Fibonacci functions (20) and (21) respectively.  
 
4. A general model of hyperbolic space with a “shofarable” topology 

 
Based on experimental data obtained in 2003 by the NASA's Wilkinson Microwave Anisotropy Probe 
(WMAP), a new hypothesis about the structure of the Universe was developed. According to [28], the 
geometry of the Universe is similar in shape to a horn or a pipe with an extended bell [27].  As a result of this 
disclosure we make the following claim:  

The Universe has a "shofarable” topology as shown in Fig.6. 
 
 

 
 

Figure 6. The “shofarable” topology 
 

 
6. A further development of the golden mathematical models 
 

6.1. Fibonacci p-numbers  
 

Reference [8] introduces generalized Fibonacci numbers  related to Pascal’s triangle. For a given р=0, 1, 2, 
3, ... generalized Fibonacci numbers are given by the following recursive relation:  

  Fp(n+1) = Fp(n)+Fp(n-p)  for   n>p+1; (40)

Fp(1) = Fp(2) = ... = Fp(p+1) = 1 (41)

Integer sequences corresponding to formulas (40) and (41) are called Fibonacci p-numbers[8]. 
We have proved that Fibonacci p-numbers can be expressed in terms of the binomial coefficients as 

follows [8]:  
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 Note that expressions (40) and (41) create an infinite number of  new recursive numerical sequences 
since every р generates its own numerical sequence. In particular, р=0 generates the binary sequence: 1, 2, 4, 
8, 16, 32, ... , while for р=1  the classical Fibonacci sequence (3) results. For the case р=0 Equation (42) 
takes the form:  

0
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nC  + … + n
nC  = 2n     (43) 

widely used in combinatorial analysis.  For р=1,   
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This formula relates Fibonacci numbers to the binomial coefficients.  
 

6.2.The golden  р-proportions and the golden algebraic equations  
 

It is well known that the ratios of adjacent Fibonacci numbers Fn/Fn-1 approach the golden mean in a limiting 
sense. We have also shown that the ratio of adjacent Fibonacci р-numbers Fp(n)/Fp(n-1) approaches in the 
limit some positive number τр that is a positive root of the polynomial equation [8]:  

xр+1 = xр + 1,      (45) 
where p=0, 1, 2, 3, … . 
 The numbers τр are referred to as golden р-proportions since for the case р=1 the number τр 
coincides with the classical golden proportion. We call Equation (45) the golden algebraic equation because 
for the case р=1 Equation (45) reduces to Equation (1)[9].  
 Note that for the case р=0,  τр=τ0 =2, and for р=∞, τр=τ∞ =1. This means that on the number line 
between the numerical constants 1 and 2 there are an infinite number of numerical constants τр, which 
expresses some deep mathematical properties of Pascal triangle. 

We have formulated the following geometric problem called a problem of the golden p-
section.  Consider a given integer р=0, 1, 2, 3, ..., and divide a line segment AВ by a point C 
according to the  following relation also shown in Fig. 7: 
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Figure 7.  The golden p-sections (p = 0, 1, 2, 3, ...) 

 
A solution to problem (46) to find a section point C of line segment AB reduces to a search 

for a positive root of the Equation (45), i.e., the division of a line segment according to Equation 
(46) is equal to the golden р-proportion [8].  

Consider two cases of the golden р-section: for the case р=0 the golden р-section reduces to 
a bisection (Fig. 7а), while for the case p = 1 it reduces to the classical golden section (Fig. 7b).  

For the remaining values of р we get an infinite number of proportional divisions of the line 
segment according to Relation (46). In particular, it is easy to show that for the case р→∞,  τр →1.  
   
 The following identity relating powers of the golden р-proportion degrees follows directly from (45): 
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 a) p = 0      A             B τ0=2 

 б) p = 1      A           B τ1=1,618 

 c) p = 2      A           B τ2=1,465 

д) p = 3      A            B τ3=1,380 

 e) p = 4      A             B τ4=1,324 
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where n is an arbitrary integer.  
Equation (45), being the equation for the roots of a (р+1)-th degree polynomial, has р+1 roots: x1, x2, 

x3, …, xp, xp+1. Later we show that root x1 always coincides with the golden р-proportion τp, i.e., x1 = τp.  Also 
each of the roots xk satisfies Equation 47, 
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.   
 The roots of Equation (45) satisfy the following identities [9]:  

х1+х2+х3+х4+... +хр+хр+1 =1     (49) 
х1х2х3х4...хр-1хрхр+1 = (-1) p     (50) 

Also, for р=1, 2, 3, ... and k=1, 2, 3, …, p [9]: 
х1

k + х2
k + х3

k + х4+... +хрk + хр+1
k = 1.     (51) 

 We have proved that there are an infinite number of the golden algebraic equations that are derived 
from equation (45):  

[ ]∑
−

=

−−++−=
1

0

)()1(
p

t

t
p

p
p

n xtpnFxpnFx    (52) 

where n≥ р+1.  
 Note that Equations (52) have a common root τp.  
 In particular, for the case р=1, Equation (52) takes the form:  

xn = Fnx + Fn-1,      (53) 
where Fn, Fn-1 are Fibonacci numbers.  
 For the case n=4 Equation (53) takes the form: 

x4 = 3x + 2.      (54) 
Equation (54) leads to the unexpected result that it describes the energy levels of the molecule butadiene, a 
chemical used for rubber production. The famous American physicist, Richard Feynman, expressed his 
admiration for Equation (54) with the following remark: "What miracles exist in mathematics! According to 
my theory, the Golden Proportion of the ancient Greeks gives the condition for the minimal energy of the 
butadiene molecule.”  
 This connection to chemistry raises our level of interest in the golden algebraic equations. Perhaps 
these equations could be used to model the energy conditions of other molecules. 
  

6.3.  The Generalized Principle of the Golden Section  
 

Consider the main identity for the golden p-proportion given by (47), and divide all terms by pτ   to get the 
following identity for a “unit”:  

1101 −−− +== p
ppp τττ .     (55) 

 From (47) and (55), we construct the following partition of unity by the golden p-proportion  [13]:  
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 i.e.,   
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 Note that for р=0 Equation (57) takes the following form:  
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This partition of unity expresses the so-called “Dichotomy Principle” of Zeno the ancient Greek philosopher 
that is used widely in mathematics and science [29]. 
 Finally, for р=1 identity (57) takes the following form: 
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Note that identity (59) expresses the Golden Section Principle that also came from ancient science.  
 Thus, identity (57) defines a more general principle for dividing a line segment into two parts, 
referred to in [13] as the “Generalized Principle of the Golden Section” for which the “Dichotomy Principle” 
and the “Golden Section Principle” are sub-cases.  

 
6.4. Generalized Binet formulas and the continuous functions for the Fibonacci and Lucas p-numbers  

 
Generalized Binet formulas enable Fibonacci p-numbers to be expressed in analytic form [10]. For a given 
integer р>0 any Fibonacci р-number Fp(n) for integer n can be represented in terms of  the roots of the 
golden algebraic Equation (46) in the following form: 

Fp (n) = k1(x1)n + k2(x2)n + … + kp+1(xр+1)n   (60) 
where k1, k2, … , kp+1 are constant coefficients that are solutions of the following system of algebraic 
equations:  

Fp (0) = k1 + k2 + … + kp+1=0 
Fp (1) = k1x1 + k2x2 + ...+ kp+1xр+1=1 
Fp (2) = k1(x1)2 + k2(x2)2 + … + kp+1(xр+1)2=1 
...................................................................... 
Fp (р) = k1(x1)р + k2(x2)р +  … + kp+1(xр+1)р=1 

(61)

  
 In particular, for р=1 the Fibonacci р-numbers reduce to the classical Fibonacci numbers Fn . For 
this special case expression (60) reduces to the well-known expression [2, 3]: 

Fn = k1(x1)n + k2(x2)n,     (62) 
where x1, x2 are the roots of  Equation (1): 

x1 = 
2

51+
=τ ; x2 = 

τ
1

− ,    (63) 

and coefficients k1,  k2 are  solutions of the system of  equations: 
F0 = k1 + k2 = 0 
F1) = k1τ + k2(-1/τ) = 1 (64)

where, 
 

k1 = 
5

1
;  k2 = 

5
1

− .     (65) 

 
If we substitute (63) and (65) into Equation (62), we get the Binet formula for Fibonacci numbers: 
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 It has been shown that Lucas numbers Ln can be expressed in terms of the roots  x1, x2 in the 
following form [2,3]: 
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 We have shown [10] that the sum of the n-th powers of the roots x1, x2, …, xp+1 of the Equation (45) 
establishes a new class of recursive sequences referred as Lucas р-numbers Lp(n), where р=0, 1, 2, 3, ..., i.e.,  

Lp (n) = (x1)n + (x2)n + … + (xр+1)n    (68) 



Using properties (48)-(51) of Equation (46)  series (68) follows from the recursive relation:  
Lp (n) = Lp (n-1) + Lp (n-р-1)      (69) 

with the following initial terms: 
Lp (0) = р+1      (70) 
Lp (1) = Lp (2) = ... = Lp (р) = 1.    (71) 

 Table 4 gives the values of the Lucas р-numbers for the cases р=1, 2, 3, 4.    
 

Table 4. Lucas p-numbers  

N 0 1 2 3 4 5 6 7 8 9 10 11 12 

L1(n) 2 1 3 4 7 11 18 29 47 76 123 199 322 

L2(n) 3 1 1 4 5 6 10 15 21 31 46 67 98 

L3(n) 4 1 1 1 5 6 7 8 13 19 26 34 47 

L4(n) 5 1 1 1 1 6 7 8 9 10 16 23 31 

  
Thus, the main result of reference [10] is a generalization of the Binet formulas and the development 

of a new class of recursive numerical sequences, the generalized Lucas numbers or Lucas p-numbers, given 
either in analytical form (68) or in recursive form (69)-(71). These new recursive numerical sequences are of 
great theoretical interest, and they may prove useful for the characterization of certain natural processes.  
 As shown above, hyperbolic Fibonacci and Lucas functions (13)-(16) and (18)-(21) are  
generalizations of the Binet formulas (9)-(10) to the continuous domain [11]. The generalized Binet formulas 
(60), (68), which allow us to express the Fibonacci and Lucas р-numbers in terms of the roots of Equation 
(45), can be used to define continuous functions for the Fibonacci and Lucas р-numbers as was done for 
hyperbolic Fibonacci and Lucas functions. The equations for the continuous functions of the Fibonacci and 
Lucas p-numbers are more complex than Equations (13)-(16) and (18)-(21). Nevertheless, the results of 
article [11] can be considered to be a variant of the golden hyperbolic models of Nature with the potential to 
be useful in the natural sciences.   
 

 
6.5. Fibonacci matrices  

 
Over past few decades, the theory of Fibonacci numbers has been complemented by the theory of 
the Fibonacci Q-matrix [7]. The latter is a square 2×2 matrix of the following form: 

Q =
⎛
⎝
⎜

⎞
⎠
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1 1
1 0

.     (72) 

Note that the determinant of the Q-matrix is equal to -1, i.e.,  
Det Q = -1.     (73) 

The n-th power of the Q-matrix can be expressed as follows:   
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where n is an arbitrary integer and  Fn-1 , Fn , Fn+1  are Fibonacci numbers [7].  
 Using (73), it is easy to get the following expression for the determinant of matrix (74):  

Det Qn = (-1)n, (75)

where n is an integer. 
 On the other hand, the determinant of matrix (74) is given by,  

n
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n FFFQDet )1(2
11 −=−= −+     (76) 



Identity (76) is known as the “Cassini formula” in honor of the well-known 17-th century 
astronomer Giovanni Cassini (1625-1712) who derived this formula [26]. It follows that the Q-matrix 
is an expression of the key Identity (76) for Fibonacci numbers, and that fundamental property (75) can be 
considered to be a compact form of the “Cassini formula”! 

 The idea of the Q-matrix was developed in [12], where the following square (p+1)x(p+1), Qp-matrix 
was introduced: 
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for  p=  0, 1, 2, 3, … . 
It contains a p×p-identity matrix bordered by the last row, which consists of 0’s and a leading 1, and 

the first column, which consists of 0’s embraced by a pair of 1’s. We list the Qp-matrices for p = 0, 1, 2, 3, 4: 
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The main result of reference [12] is a proof of the following expression for the n-th power of the Qp-
matrix:  
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where р =0, 1, 2, 3, …, n = 0, ±1, ±2, ±3, …, and elements of the matrix are the Fibonacci p-numbers.  
Note that the class of matrices (77) has an interesting recursive property. If we cross out the last, that 

is, (р+1)-th column and the next to the last, that is, p-th row in the Qp-matrix, then the matrix reduces to 
matrix Qр-1. This means that the determinant of the Qp-matrix differs from the determinant of the Qр-1-matrix 
only by its sign, i.e.,  

Det Qр-1 = - Det Qp .     (79) 
 Taking into consideration (73) and (79),   

Det Qp = (-1)р.      (80) 
And it follows that, 

Det n
pQ  = (-1)pn.     (81) 



where p = 0, 1, 2, 3, … ; n = 0, ±1, ±2, ±3, … . 

 The main result of reference [12] is the development of a new class of square matrices satisfying 
Equation (81). 

 It is clear that matrices (77) and  (78) can be used for the future progress of Fibonacci research. Here 
expression (81) can be considered to be a generalization of the “Cassini formula” . For example, for the case 
р=2 the generalized “Cassini formula” takes the form: 

Det nQ2 = F2(n+1)[F2(n-2)F2(n-2) - F2(n-1)F2(n-3)] + F2(n)[F2(n)F2(n-3) - F2(n-1)F2(n-2)] +   

  + F2(n-1)[F2(n-1)F2(n-1) - F2(n)F2(n-2)] = 1.    (82) 
While the Cassini formula gives a connection between three adjacent Fibonacci numbers, formula 

(82) connects five adjacent Fibonacci 2-numbers F2(n-3), F2(n-2), F2(n-1), F2(n) and  F2(n+1) for any integer 
value of  n.  

There are an infinite number of generalized Cassini formulas similar to (82)  for р=1, 2, 3, ... 
6.6. The golden matrices  

Stakhov has introduced a class of golden matrices [13]. Let us represent matrix (74) in the form of two 
matrices, one for even (n=2k) and the other for odd (n=2k+1) values of n: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−
+=

12
122

2

2

kFF
FkFkQ

k

k
     (83) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=
+

++

kk

kk

FF
FkF

Q
212

1212 22      (84) 

 Using relation (22), write the matrices (83), (84) in terms of symmetric hyperbolic Fibonacci 
functions (18), (19): 
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where k is an integer.  
Substituting discrete variable k in the matrices (85), (86) with continuous variable x,  results in two 

unusual matrices that are functions of x:  
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It is clear that Matrices (87) and (88) are generalizations of the Q-matrix (74) for the continuous domain. 

These matrices have a number of unusual mathematical properties. For example, for when 
4
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It is difficult to imagine what is meant by the “square root” of the Q-matrix», but just such a “Fibonacci 
fantasy” follows from Equation (89)!  



Using properties (24) and (25) of the symmetric hyperbolic functions to compute the determinants of 
matrices (87) and (88) leads to the result,  

Det Q2x = 1      (90) 
Det Q2x+1 = - 1      (91) 

 Therefore these determinants are independent of x and equal identically to 1 in absolute value. In fact 
identities (90) and (91) are generalizations of the Cassini formula to the continuous domain! 
 At present it is difficult to predict where matrices (78), (87), (88), having unusual mathematical 
properties (79), (81),(90), (91), might be used. However, they were recently applied to coding theory and 
cryptography [13, 24, 25]. 
 
4. Conclusion   
 
References [4-25] have been successful in developing new mathematical equipment, based on both 
the classical golden section and the golden p-sections, useful for describing the “hyperbolic worlds” 
of Nature. The most important of these golden mathematical models are the following: 
1. Hyperbolic Fibonacci and Lucas functions. A  consequence of their introduction has been the realization 
that the classical hyperbolic functions (12), (13), which are useful in mathematics and theoretical physics, are 
not the only tools for creating mathematical models of the “hyperbolic world". In addition to models based 
on classical hyperbolic functions (Lobachevsky's hyperbolic geometry, Minkowsky’s geometry, etc.), there is 
a golden hyperbolic world based on hyperbolic Fibonacci and Lucas functions [4-7]. The golden hyperbolic 
world exists objectively and independently of our awareness. This “hyperbolic world” is ubiquitous to 
Living Nature. In particular, it appears in pinecones, sunflower heads, pineapples, cacti, and in 
florescence’s of various flowers in the form of the Fibonacci and Lucas spirals on the surfaces of these 
biological objects (the phyllotaxis law). Note that the hyperbolic Fibonacci and Lucas functions 
[4-7], which underlie phyllotaxis phenomena are not mere inventions of Fibonacci-
mathematicians, but rather they objectively reflect the  mathematical laws underlying the 
geometry of Living Nature. 
2. The Golden Shofar. The Golden Shofar is another new model of the golden hyperbolic world. The 
article «Hyperbolic Universes with a Horned Topology and the CMB Anisotropy» [28] proved a great 
surprise to the authors because it showed that the geometry of the Universe is quite possibly is 
“shofarable” by its structure.  
3. The Generalized Principle of the Golden Section, which is based on the golden р-proportions, is of 
general scientific interest and could influence the development of all natural sciences wherever the 
“Dichotomy Principle” and the classical Golden Section Principle are used [29].  

In summary, the authors would like to express their surprise that it has taken so long for  
mathematicians and physicists to give proper attention to the development of the mathematical needed to 
model the golden hyperbolic world. However, toward the end of the 20th century, due to the efforts of 
several theoretical physicists, the situation began to change. References [30-39] demonstrate a substantial 
interest on the part of modern theoretical physicists in the golden section and the golden hyperbolic world. 
The works of Shechtman, Butusov, Mauldin and William, El Naschie, Vladimirov, Petoukhov and other 
scientists show that it is impossible to imagine future progress in physical and cosmological research without 
a consideration of the golden section. In this connection, the golden genomatrices of the Russian scientist 
Sergey Petoukhov [39] are of great importance for the future development of science. Petoukhov’s 
discovery shows that the golden section underlies the genetic code!      

It seems that the dramatic history of the golden section, which has continued over several millennia, 
may conclude with a great triumph for the golden section in the beginning of the 21st century, the “Century 
of Harmony.” Penrose tiles, a resonance theory of the Solar system (Molchanov and Butusov ), quasi-crystals 
(Shechtaman), fullerenes (Kroto, Curl and Smalley, 1996 Nobel Prize in chemistry) were only precursors of 
this triumph. “Harmony Mathematics” (Stakhov), hyperbolic Fibonacci and Lucas functions (Stakhov, 
Tkachenko, Rozin), Bodnar’s geometry, the “Law of structural harmony of systems” (Soroko), El Nashie’s 
theory of E-infinity, Fibonacci matrices and a new coding theory (Stakhov), the golden matrices and a new 
cryptography (Stakhov), and finally the golden genomatrices (Petoukhov) are only a partial list of recent 
scientific discoveries based on the golden section. These discoveries give reason to suppose that the golden 



section may be a kind of “metaphysical knowledge”, “pre-number”, or “universal code of Nature”, 
which could become the foundation for the future development of science, in particular, mathematics, 
theoretical physics, genetics, and computer science.  

In 1996, The Fibonacci Quarterly, published the paper “On Fibonacci hyperbolic trigonometry and 
modified numerical triangles” written by the well-known Fibonacci-mathematician Zdzislaw W. Trzaska 
[40]. On the one hand, interest of Fibonacci-mathematicians in hyperbolic Fibonacci functions should be 
encouraged, on the other hand a comparison of Trzaska’s paper [40] and Stakhov and Tkachenko’s paper [4] 
showed that, in the part concerning hyperbolic Fibonacci functions, Trzaska used all of the material of 
Stakhov and Tkachenko’s paper [4] without attribution thus creating the perception that he was the original 
discoverer of the hyperbolic Fibonacci functions. However, since reference [4] was published in 1993, three 
years before the publication of Trzaska’s paper, this establishes Stakhov and Tkachenko’s priority in the 
discovery of hyperbolic Fibonacci and Lucas functions. 

 
In conclusion, the authors would like to express their great thanks to the outstanding Ukrainian 

mathematician academician Yuri Mitropolski for his continued encouragement and support of their  research 
into the golden section, and to Jay Kappraff for his editorial assistance.  
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