Шелаев А.Н

ОБОБЩЁННАЯ ГЕОМЕТРИЧЕСКАЯ МОДЕЛЬ ЗОЛОТЫХ СЕЧЕНИЙ И ФУНКЦИЙ СРЕДНИХ ЗНАЧЕНИЙ

В ряде работ (см., напр. [1-5]) автором статьи показано, что появлению в некоторых математических и физических объектах соотношений гармонии, выражающихся через константы золотого сечения $\phi = (-1 + \sqrt{5})/2 \approx 0,618$, $\phi = (1 + \sqrt{5})/2 = \phi + 1 = 1/\phi \approx 1,618$ и другие фундаментальные математические константы могут соответствовать экстремумы некоторых, характерных для данного объекта функций средних значений. Это связано, в частности, с тем, что введённая автором статьи в [6,7] обобщённая геометрическая модель золотых сечений, оказывается одновременно и моделью функций средних значений, как это показано в [8]. В данной работе проводится детальное рассмотрение этой общей модели.

Как известно, средние n-го порядка k величин m_p $(1 \le p \le k)$ определяются выражением $\overline{M}(n,m_p) = [\sum_{p=1}^k m_p^n / k]^{1/n}$. Обычно используются 5 средних: гармоническое \overline{M}_H (n = -1), геометрическое $\overline{M}_G(n \to 0)$, арифметическое \overline{M}_A (n = 1), квадратичное $\overline{M}_S(n = 2)$ и кубичное $\overline{M}_C(n = 3)$ (M - Mean, H – Harmonic, G – Geometric, A – Arithmetic, S – Square, C – Cubic). В общем случае будем использовать вместо целого числа n произвольное число $\lambda(-\infty < \lambda < \infty)$.

Рассмотрим теперь две геометрических модели для случая средних двух величин с и d (c ≤ d), который мы и будем анализировать. В 1-й модели (рис. 1) с и d длины верхнего и нижнего основания любой трапеции. Тогда можно показать, что средние c,d равны длинам отрезков, получаемых при пересечении определяемых ниже прямых, параллельных основаниям трапеции, с боковыми сторонами: $\overline{M}_{H} = 2/(1/c+1/d) = 2c \cdot d/(c+d)$ - прямая проходит через точку пересечения диагоналей трапеции; $\overline{M}_{G} = \sqrt{c \cdot d}$ - прямая делит трапецию на две подобные трапеции; $\overline{M}_{A} = (c+d)/2$ - прямая равно отстоит от оснований трапеции; $\overline{M}_{S} = \sqrt{(c^{2}+d^{2})/2}$ - трапеции равны по площади; $\overline{M}_{C} = \sqrt[3]{(c^{3}+d^{3})/2}$ - равны объёмы усечённых конусообразных фигур, площади оснований которых равны соответственно $\pi d^{2}/4$, $\pi M_{C}^{2}/4$ и $\pi M_{C}^{2}/4$, $\pi c^{2}/4$, а высоты равны расстояниям отрезка \overline{M}_{C} до оснований трапеции.

Аналогично \overline{M}_C через равенство псевдо n -мерных объёмов введём средние $\overline{M}_n = [(c^n + d^n)/2]^{1/n}$ для |n| > 3. При этом $\lim_{n \to +\infty} \overline{M}_n = d$, $\lim_{n \to -\infty} \overline{M}_n = c$.

В соотношениях $2c \cdot d/(c+d) \leq \sqrt{c \cdot d} \leq (c+d)/2 \leq \sqrt{(c^2+d^2)/2} \leq \sqrt[3]{(c^3+d^3)/2}$ знак равенства имеет место при c = d, когда трапеция превращается в прямоугольник.

Вторая модель средних значений показана на рис. 2. От точки В в одном направлении откладываются два отрезка $BM_i = c$ и $BM_e = d$ (смысл индексов i, е указан ниже). На отрезке M_eM_i как на диаметре строится полуокружость с центром в точке О и радиусом $R = OM_e = OM_i = (d-c)/2$. Тогда легко

показать, что $BO = BM_A = (c+d)/2 = \overline{M}_A$, а длина отрезка BM_G , проведённого из точки B и касающегося окружности, равна $\overline{M}_G = \sqrt{c \cdot d}$. Действительно, в этом случае $BM_G^2 = BM_i \cdot BM_e = c \cdot d$, кроме того, при этом $OM_G \perp BM_G$.

Опустим теперь перпендикуляр $M_G M_H$ из точки M_G на отрезок BO. Тогда можно показать, что $BM_H = 2c \cdot d / (c+d) = \overline{M}_H$.

Поместим начало координат в точку O(0,0), тогда координаты точки B равны ((c+d)/2,0), а координаты любой точки окружности (x, y) определяются уравнением: $x^2 + y^2 = R^2 = ((d-c)/2)^2$. Отсюда находим координаты точки M_S, для которой $BM_S = \sqrt{((d+c)/2 - x_S)^2 + (y_S - 0)^2} = \overline{M}_S = \sqrt{(c^2 + d^2)/2}$. Из этого соотношения следует, что $x_S = 0$, а $y_S = (d-c)/2$. Таким образом, $BM_S = \overline{M}_S$, когда отрезок OM_S перпендикулярен отрезку OB.

Наконец, найдём координаты точки $M_C(x_C, y_C)$, лежащей на окружности, когда $BM_C = \overline{M}C = \sqrt{(c^3 + d^3)/2}$. Расчёты, аналогичные расчётам для нахождения x_S , y_S , показывают, что $y_C = \sqrt{R^2 - x_C^2}$, $x_C = -[((c^3 + d^3)/2)^{2/3} - (c^2 + d^2)/2]/(c+d)$.

Принципиально то, что при $c = \phi$, $d = 2 + \phi$ вторая геометрическая модель средних значений совпадает с обобщённой моделью золотых сечений, ввёдённой автором статьи в [6,7]. При этом R = 1, $BM / AM = const = \phi$ для всех точек M, находящихся на окружности ($AO = \phi$, BM_i и BM_e - отрезки, соответствующие внутреннему и внешнему делению отрезка AB = 1 в отношении золотой пропорции). Более того, все найденные в [6,7]

соотношения гармонии по константам ф, ф выполняются и для средних значений при тех же геометрических конфигурациях.

Повернув BM_H и BM_A вокруг точки В на угол 36⁰, мы разместим все точки M_n на окружности.

Введя угол $\alpha = \angle BOM$ и учитывая следующие соотношения:

$$AM(\alpha) = \sqrt{2 - \phi \cdot (2\cos\alpha + 1)}, \quad BM(\alpha) = \sqrt{3 - 2(1 + \phi)\cos\alpha + \phi} \quad (1-2),$$

получим, что $BM_H = \overline{M}_H = 1$ при $\alpha_H = \arccos(\varphi/2) = 36^0$; $BM_G = \overline{M}_G = \sqrt{\varphi}$ при $\alpha_G = \arccos \varphi \simeq 51,827^\circ$; $BM_A = \overline{M}_A = \varphi$ при $\alpha_A = \arccos(\varphi/2) = 72^\circ$; $BM_S = \overline{M}_S = \sqrt{2+\varphi}$ при $\alpha_S = 90^\circ$; $BM_C = \overline{M}_C = \sqrt[3]{5\varphi+1} = \sqrt[3]{9+\varphi^5}$ при $\alpha_C = \arccos[(2+\varphi-(5\varphi+1)^{2/3})/2\varphi] \simeq$ 103,175 $\approx 2\alpha_G \simeq 103,654^\circ$.

Отметим, во-первых, то, что значения $\overline{M}_H = 1$, $\overline{M}_G = \sqrt{\phi}$, $\overline{M}_A = \phi$ являются членами геометрической прогрессии со знаменателем $q = \sqrt{\phi}$.

Далее, введём угол $\beta = \angle OBM$ и, используя то, что $\sin\beta = \sin\alpha / BM(\alpha)$, построим графики зависимостей $\beta(\alpha)$ и $\alpha - \beta(\alpha)$, см. кривые 1, 2 на рис. 3.

Как следует из рис. 3, зависимость $\beta(\alpha)$ немонотонна и имеет максимум: $\beta_{max} = \arcsin \phi \simeq 38,173^{\circ}$ при $\alpha = \arccos \phi \simeq 51,827^{\circ}$, соответствующим случаю BM = \overline{M}_{G} .

При $\beta = \arccos(\varphi/2) = 36^{\circ}$ отрезки BM_H и BM_A лежат на одной прямой, пересекающей окружность в точках M_H и M_A . В общем случае для любых двух отрезков BM и BN, лежащих на одной прямой и пересекающих окружность в точках M и N, выполняется соотношение: $BN \cdot BM = c \cdot d = \varphi$, при этом $BN = \overline{M}_{-|\lambda|} < BM = \overline{M}_{|\lambda|}$.

Зависимость α – β(α) имеет минимум при α_m ~17,942 283°, причём этот минимум соответствует реализации следующей средней величины:

BM(α_m) = $\overline{M}_{-4} = \sqrt{\phi/3} \simeq 0,734401$. Кроме того, $\alpha = \beta(\alpha)$ при $\alpha = 36^{\circ}$.

Важно то, что, как было установлено, реализации основных средних значений $\overline{M}_H, \overline{M}_G, \overline{M}_A, \overline{M}_S$ соответствуют экстремумы длин, площадей или их производных.

Так, $MB = M_H = 1$ при $\alpha = \arccos(\varphi/2) = \pi/5$. В этом случае $\triangle OMB$ равнобедренный (OM = BM = 1), и минимум, равный нулю, при $\alpha = \pi/5$ имеет функция $Y_H(\alpha)$, равная разности средне-арифметического и средне-геометрического от сторон OM = const = 1 и $BM(\alpha)$:

$$Y_{\rm H}(\alpha) = (\rm OM + BM(\alpha)) / 2 - \sqrt{\rm OM \cdot BM(\alpha)} = 1 / 2 + BM(\alpha) / 2 - \sqrt{\rm BM(\alpha)}$$
(3)

Аналогично, $MB = \overline{M}_A = \phi$ при $\alpha = \arccos(\phi/2) = 2\pi/5$. В этом случае $\triangle OMB$ также равнобедренный (но при этом $BO = BM = \phi$) и минимум равный нулю при $\alpha = 2\pi/5$ имеет функция $Y_A(\alpha)$, равная разности среднеарифметического и средне-геометрического от сторон $BO = const = \phi$ и $BM(\alpha)$:

$$Y_{A}(\alpha) = (BO + BM(\alpha)) / 2 - \sqrt{BO \cdot BM(\alpha)} = \varphi / 2 + BM(\alpha) / 2 - \sqrt{\varphi \cdot BM(\alpha)}$$
(4)

 $BM = \overline{M}_G = \sqrt{\phi}$ при $\alpha = \arccos \phi \approx 51,827^\circ$, $\angle OMB = 90^\circ$. В этом случае производные от $AM(\alpha)$ и $BM(\alpha)$ имеют максимум именно при $\alpha = \arccos \phi$, при этом $dAM(\alpha)/d\alpha = \phi$, $dBM(\alpha)/d\alpha = 1$. Кроме того, в этом случае

минимален радиус окружности, описанной около прямоугольного $\triangle OMB$: R_{OMB} min = $\varphi / 2$.

BM = $\overline{M}_S = \sqrt{2 + \phi}$ при $\alpha = \pi/2$. В этом случае, очевидно, максимальна площадь $\triangle OMB$, $\triangle OMA$ и $\triangle AMB$.

Множество экстремальных соотношений можно получить и из анализа площади $\triangle OMN$, где, как уже отмечалось, N, M - точки пересечения прямой BM с окружностью (BN < BM). Обозначив $\angle BON = \alpha_N$, $\angle BOM = \alpha_M$, получим, что эта площадь определяется соотношениями;

$$\mathbf{S}_{\Delta \text{OMN}}(\alpha_{\text{M}}) = (\phi/2) \cdot (\sin \alpha_{\text{M}} - \sin \alpha_{\text{N}}(\alpha_{\text{M}})) = (1/2) \cdot \sin(\alpha_{\text{M}} - \alpha_{\text{N}}(\alpha_{\text{M}}))$$
(5),

$$\alpha_{\rm N}(\alpha_{\rm M}) = \arccos[\cos\alpha_{\rm M} + BM^2(\alpha_{\rm M})/2\phi - \phi/2BM^2(\alpha_{\rm M})]$$
(6)

Зависимость $S_{\Delta OMN}(\alpha_M) = S(\alpha)$ показана на рис. 4, кривая – 1.

Как и должно быть, $S(0) = S(\pi) = 0$. Кроме того, площадь $\triangle OMN$ обращается в ноль для случая среднего геометрического: $S(\alpha_G = \arccos \phi) = 0$, когда точки M и N совмещаются. Для среднего гармонического и арифметического $S(\alpha_H = \pi/5) = S(\alpha_A = 2\pi/5) = \sin(\pi/5)/2 = \sqrt{2-\phi}/4$. Для среднего квадратичного $S(\alpha_S = \pi/2) = 1/(\phi + \phi)$.

 $S(\alpha) = S_{max} = 1/2$ при $\alpha_1 \simeq 19,026^{\circ}$ и $\alpha_2 \simeq 109,086^{\circ}$. Эти углы соответствуют следующим значениям $\lambda_{1,2}$ в формуле (8) для функций средних значений: $\lambda_1 \simeq -3,597$ и $\lambda_2 \simeq 3,597$. Отметим при этом, что $3,597 \simeq 3,6$, а

3,6 = (3+3/5). В то же время числа $3 = \phi^2 + \phi^2$, $5 = (\phi + \phi)^2$ симметрично и красиво выражаются через константы золотого сечения ϕ, ϕ .

Числа 3, 5 и $2 = (\phi + \phi)^2 - (\phi^2 + \phi^2)$ часто обнаруживаются и в соотношениях гармонии для различных физических объектов (см., напр. [5,7,8]). При этом также обнаруживаются как точные, гармонические соотношения, так и квазигармонические соотношения, выполняющиеся с точностью $\leq 0,1\%$.

Как следует из рис. 4, данное значение площади 0 < S < 1/2 реализуется при четырёх значениях угла α . Введя функцию $|S(\alpha) - S(\alpha_0)$ можно найти для неё четыре минимума для $0 < \alpha_0 < 180^\circ$, $\alpha_0 \neq \alpha_G$. На рис. 4 показан график функции $|S(\alpha) - S(36)|$. Эта функция имеет два минимума при $\alpha_{1,2} = 36^\circ, 72^\circ$. Этим углам соответствуют $\lambda_{1,2} = -1,1$ (см. также рис. 5) Кроме того, функция $|S(\alpha) - S(36)|$ имеет ещё два минимума при $\alpha_3 \approx 6,989\,843^\circ$ и $\alpha_4 \approx 150,989\,843^\circ$ ($\alpha_4 - \alpha_3 = 144^\circ = 2(\alpha_2 - \alpha_1)$). Углам $\alpha_{3,4}$ соответствуют $\lambda_3 = -22,702$ и $\lambda_4 = -22,702$, при этом $22,7 \approx 2^{5/2}3^25^{-1/2}$. Таким образом, и в этом случае значения λ выражаются квазигармонически через «магические» числа из последовательности Фибоначчи 2, 3, 5.

Отметим также, что $\int_{0}^{180} S(\alpha) d\alpha \approx 1$, т. е. площадь под кривой $S(\alpha)$ с высокой точностью (<10⁻⁶) равна 1 ! В то же время длина кривых $|S(\alpha) - S(\alpha_0)|$ является инвариантом, так как не зависит от α_0 . При любых α_0 эта длина равна $L = \int_{0}^{\pi} \sqrt{1 + (dS(\alpha)/d\alpha)^2} d\alpha \approx 3,901 \approx 2\pi\phi \approx 3,883$ (точность аппроксимации $\approx 4, 6 \cdot 10^{-3}$).

Для данной модели найдены и другие интересные соотношения, напр.:

$$BN_{S} = \overline{M}_{G}^{2}(c,d) / \overline{M}_{S}(c,d) = [\overline{M}_{H}(c^{2},d^{2})]^{1/2}, \qquad \overline{M}_{-\lambda} \cdot \overline{M}_{\lambda} = \overline{M}_{0}^{2}$$
(7)

Общий характер зависимости средних значений для данной геометрической модели демонстрирует график функции

$$\overline{\mathbf{M}}_{1}(\lambda) = \left[\left(\phi^{\lambda} + (2 + \phi)^{\lambda} \right) / 2 \right]^{1/\lambda}$$
(8),

показанный на рис. 5 (кривая 1). Производная этой функции (кривая 3) имеет максимум при $\lambda \simeq 0,493185 \simeq \operatorname{ctg}\sqrt{2/\phi} \simeq 0,494217$. При $\lambda \to \infty$ $\overline{M}_1(\lambda) \to \phi + 2$, при $\lambda \to -\infty$ $\overline{M}_1(\lambda) \to \phi$.

Полагая $c = \phi/2$, $d = 1 + \phi/2$, $AM_i = \phi^2/2$, получим что радиус окружности R = (d-c)/2 = 1/2, $BM/AM = const = \phi$, а длины отрезков $AM(\alpha)$ и $BM(\alpha)$ определяются выражениями:

$$AM(\alpha) = \sqrt{2 - \phi \cdot (2\cos\alpha + 1)} / 2, \quad BM(\alpha) = \sqrt{3 - 2(1 + \phi)\cos\alpha + \phi} / 2 \tag{9}$$

B этом случае $\overline{M}_H = 1/2 = \cos(\pi/6)$, $\overline{M}_G = \sqrt{\phi}/2 \simeq 0.636 \simeq ctg1 \simeq 0.642$, $\overline{M}_A = \phi/2 = \cos(\pi/5)$, $\overline{M}_S = \sqrt{2+\phi}/2 = \cos(\pi/10)$, $\overline{M}_C = \sqrt[3]{5\phi+1}/2 \simeq tg(\phi/2)$.

Общий характер зависимости средних значений для последней геометрической модели средних демонстрирует график функции

$$\overline{M}_{2}(\lambda) = [(\phi/2)^{\lambda} + (1 + \phi/2)^{\lambda})/2]^{1/\lambda}$$
(10),

показанной на рис. 5 (кривая 2). Производная функции $\overline{M}_2(\lambda)$ (кривая 4) также имеет максимум при $\lambda \simeq 0,493185 \simeq \operatorname{ctg}(\sqrt{2/\phi})$. При $\lambda \to \infty$ $\overline{M}_2(\lambda) \to 1 + \phi/2$, при $\lambda \to -\infty$ $\overline{M}_2(\lambda) \to \phi/2$. Наконец, $\overline{M}_1(\lambda)/\overline{M}_2(\lambda) = 2$ при любых λ .

Литература

1. Шелаев А.Н. Бистабильность масштабов математического маятника и золотые сечения (коды да Винчи) для гравитационных полей. Актуальные проблемы современной науки, 2008, № 4, - С.82-88.

2. Шелаев А.Н. Соотношения гармонии для внутренних и внешних гравитационных полей однородных тел и экстремумы функций средних значений для потенциалов и ускорений. Актуальные проблемы современной науки, 2011, № 2, С.115-118.

3. Шелаев А.Н. Соотношения гармонии в прямом и обратном циклах Карно и экстремумы функций средних значений. Актуальные проблемы современной науки, 2011, №1, С.115-117.

4. Шелаев А.Н. Инварианты, экстремумы и соотношения гармонии в круговых биллиардах и оптических резонаторах. Актуальные проблемы современной науки, 2010, № 5, - С.61-63.

5. Шелаев А.Н. Соотношения гармонии и экстремумы функций средних значений для перехода сверхпроводник-проводник в магнитном поле. Актуальные проблемы современной науки, 2012, № 3.

6. Шелаев А.Н. Соотношения гармонии и экстремумы длин площадей и их производных в обобщённой модели золотого сечения. Актуальные проблемы современной науки, 2010, № 6, С. 160-162.

7. Шелаев А.Н. Обобщённая геометрическая модель золотых сечений и соответствующие ей характерные экстремумы длин, площадей и их производных. Сайт Академии Тринитаризма. М., Эл. № 77-6567 публ. 17431, 29.04.2012.

9

8. Шелаев А.Н. Соотношения гармонии в обобщённой геометрической модели золотых сечений и функций средних значений. Актуальные проблемы современной науки, 2011, № 1, С.118-120.

Сведения об авторе

Шелаев Анатолий Николаевич – доктор физ.-мат. наук, профессор

Место работы – НИИ ядерной физики МГУ им. М.В. Ломоносова

Автор и соавтор более 200 научных работ

Лауреат научной премии им. акад. Р.В.Хохлова

Основные направления исследований – нелинейная динамика, в том числе динамика генерации вращающихся кольцевых лазеров; невзаимные оптические эффекты и методы управления лазерным излучением и конкурентным взаимодействием встречных световых волн в усиливающих и нелинейных средах; системная гармония и методы исследования нестандартных математических и физических задач

E-mail: <u>Shelaev@rambler.ru</u>