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                                                     ABSTRACT   
 

Petoukhov has shown that a family of bisymmetric 2n x 2n matrices encode the structure of the four RNA 
and DNA bases and 64 codons that make up the 20 amino acids in all living structures.  He discovered that the 
elements of the square roots of these matrices are all powers of the golden mean.  We have generalized his matrices 
and shown that the square roots of general bisymmetric matrices are generalizations of the golden mean including a 
subclass that correspond to the family of silver means.  Powers of these matrices are also shown to generate all 
Pythagorean triples.  The integers in these matrices are identical to the set of integers in a table attributed to the 
second century Syrian mathematician, Nicomachus, who used them to describe the ancient musical scale of 
Pythagoras. 
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                                                        1.  INTRODUCTION 
 
   Petoukhov (2001, 2004), (He, 2005) has studied a family of bisymmetric 2n x 2n matrices that 

code the structure of the four DNA/RNA bases, the 64 codons that make up the 20 amino acids 

in all living structures, and beyond that, the proteins assembled from the amino acids as building 

blocks.   As the result of his studies he has found that the amino acids express certain 

degeneracies, 8 with high degeneracy containing 4 or more codons, and 12 with low degeneracy, 

containing less than 4 codons.  These degeneracies are propagated through the 17 different 

genome classes of RNA/DNA.  The particular class of DNA/RNA that we will be studying in 

this paper is the class of mitochondrial DNA.  Although different groups of codons correspond to 

the same amino acid in different genome classes, the quality of the degeneracy (high or low) is 

preserved.  The first matrix of the family expresses the fact that two of the RNA bases have 3 

hydrogen bonds while the other two have 2 hydrogen bonds.  The elements of the rows and 

columns of this family of matrices reproduce the sequences of musical fifths, i.e., integer ratios 
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of 3:2,  found in a table attributed to the Syrian mathematician of the first  and second century 

AD, Nicomachus (Kappraff, 2000a).  The integer values in this table have multiplicities given by 

the rows of Pascal’s triangle.  The square roots of this family of matrices have entries that are all 

powers of the golden mean.   A brief discussion of  Petoukhov’s approach to genetic coding is 

given in Appendix A. 

     We have generalized Petoukhov’s matrices to a family of bisymmetric matrices in which the 

first 2x2 matrix has a pair of positive real numbers as elements, but are otherwise arbitrary.  

Bisymmetric matrices are matrices whose elements are symmetric with respect to both left and 

right leaning diagonals.  We derive general formulas for the elements of the square root of this 

matrix.  They are irrational numbers that are generalizations of the golden mean.  In fact for a 

subclass of the matrices the elements of the square root matrix are generalizations of the golden 

mean known as silver means.  Finally, we show that when the elements of the bisymmetric 

matrix are positive integers, powers of these matrices generate Pythagorean triples.    

 
                                               2. PETOUKHOV’S GENOMIC MATRICES 

 
     Petoukhov has shown that the four nitrogenous bases that make up RNA and DNA, adenine, 

cytosine, guanine, and uracil/thymine: A,C,G,U/T are equivalent in two different ways. 

      a..  C=U and A=G according to the relation, “pyrimidine or purine.” 
b. C=G and A=U/T according to the relation, “possesses three hydrogen bonds or two 

hydrogen bonds  (Watson, 1953)” 
 
These two properties characterize a family of matrices related to the four bases.  The first of 

these matrices, the 2x2 RNA Matrix 1, specifies the four bases in which C is coded by 11, A by 

10, U by 01 and G by 00.  For relation a) C and U are pyrimidines and are assigned the value 1 in 

column 1 while A and G are purines and are assigned the value 0 in column 2 .  For relation b) C 

and G have three hydrogen bonds coded by 11 and 00 respectively in Matrix 1, while A and U 
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have two hydrogen bonds coded by 10, and 01 respectively.  In this manner the bases are 

assigned the values 3 and 2 respectively along the two diagonals of Matrix M1 shown below. 

                                                                    01

                                                             
0
1

⎥
⎦

⎤
⎢
⎣

⎡
GU
AC

                                                      (1) 

 
                                                                    01

                                                   M1 =   
0
1

⎥
⎦

⎤
⎢
⎣

⎡
32
23

.                                                        

 
Matrix 2 shows that the bit strings that code the four bases are organized according to binary 

reflecting Gray code values of the numbers in parentheses.   

                                       Mcoord =    ⎥
⎦

⎤
⎢
⎣

⎡
)0(00)1(10
)3(01)2(11

                                                       (2)     

To obtain the Gray code value of an integer start with 0 equal 0 in Gray code.  Then take the 

Gray code value of an integer and change 1 to 0 or 0 to 1 in the least significant place so long as 

it does not reproduce a Gray code value already obtained to obtain Gray code for the next 

integer.  For example, 1 is represented by 1 (or 01) in Gray code, but 2 changes 01 to 11.  Notice 

that adjacent values in Matrix 2, including wrap-around, differ by a single bit.  We used Gray 

code because the amino acids organize themselves so that a mutation of a single base within a 

codon would still preserve the identity of the amino acid, i.e., indices of adjacent codons within a 

single amino acid should differ by no more that a single digit as you can see by examining the 

amino acids in Fig. 4a and b.  The codons for any amino acid lie in adjacent rows and columns 

and therefore, their Gray code representations differ by a single bit.  Petoukhov organized these 

matrices using binary and got essentially similar results which is remarkable since adjacent 

binary indices need not differ by a single code digit, yet the amino acids organize themselves in 

binary in just this manner.   
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    The 4x4 matrix 2M   is shown below.  The rows and columns are numbered from bottom to 

top and right to left by binary reflecting Gray code.   

                         10       11     01      00                                         10 11  01  00 

                

00
01
11
10

                       M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

GGGUUUUG
GAGCUCUA
AAACCCCA
AGAUCUCG

2 = 

00
01
11
10

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

9646
6964
4696
6469

                        (3a,b) 

 
and the indices are organized again by binary reflecting Gray code, 
 

                    Mcoord = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

)0(0000)1(0100)2(1100)3(1000
)7(0001)6(0101)5(1101)4(1001
)8(0011)9(0111)10(1111)11(1011
)15(0010)14(0110)13(1110)12(1010

 

         
where 1010, i.e., 11,00 corresponds to CG and so we assign it the product of the corresponding 

hydrogen bonds, 3x3=9.  Likewise 1011, i.e., 11, 01, corresponds to CU and so is assigned the 

value 3x2=6, etc. These numbers correspond to the number of ways that the hydrogen bonds can 

interact between bases.   When represented in binary as Petoukhov did,  where 

 is the symbol for tensor product.  Likewise M

112 MMM ⊗=

⊗ n is represented by a tensor exponentiation of 

the nth degree.  Continuing with our Gray code representation,   results in the 8x8 matrix,      3M
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                                            3M  =                                                                                                                                           

                          

                                                                                                                                                                     4a) 
⎥
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⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥

⎦

⎤
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)()()()()()()()(
)()()()()()()()(
)()()()()()()()(
)()()()()()()()(
)()()()()(Pr)(Pr)(ln)(
)()()()()()(Pr)(ln)(
)()()()()()()()(
)()()()()()()()(

GlyGGGGlyGGUValGUUValGUGLeuUUGPheUUUCysUGUTrpUGG
GlyGGAGlyGGCValGUCValGUALeuUUAPheUUCCysUGCTrpUGA
GluGAAAspGACAlaGCCAlaGCASerUCASerUCCTyrUACStopUAA
GluGAGAspGAUAlaGCUAlaGCGSerUCGSerUCUTyrUAUStopUAG
LysAAGAsnAAUThrACUThrACGoCCGoCCUHisCAUGCAG
LysAAAAsnAACThrACCThrACAproCCAoCCCHisCACGCAA
StopAGASerAGCIleAUCMetAUALeuCUALeuCUCArgCGCArgCGA
StopAGGSerAGUIleAUUMetAUGLeuCUGLeuCUUArgCGUArgCGG

and,                                                                                                                               
                                         100  101  111  110 010   011  001 000                           

                       M3 =  

000
001
011
010
110
111
101
100

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

271812181281218
182718128121812
121827181218128
181218271812812
128121827181218
812181218271812

121812812182718
181281218121827

                                             (4b) 

 
where 100100, i.e., 11, 00, 00 corresponds to CGG so we assign it the product 3x3x3= 27,  

111100, i.e., 11, 10, 10 corresponds to CAA so we assign the product 3x2x2 = 12, etc.  In Matrix 

4a the 20 amino acids are listed in parentheses.  Notice that there are 8 amino acids with high-

degeneracy (4 or more codons) and 12 with low-degeneracy (less than 4 codons).  If the high 

degeneracy codons in Matrix 4a are shaded gray the resulting pattern has 2-fold rotational 

symmetry as shown in Fig. 1, while if all matrix locations in Matrix 4b of a given integer value 

are coded by a different color, the resulting pattern has the symmetry of D2,  symmetric in both 

diagonals as shown in Fig. 2a.  When the elements of the matrix are ordered according to binary, 

as Petoukhov did, the result is shown in Fig. 2b, also with D2 symmetry..  The designs in Fig. 2a 

and b inspired the American quilter, Elaine Ellison to create the lovely quilts shown in Fig. 2c 
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which she named, “The music of the Genes” for reasons that will be described below.   

Petoukhov has shown that while there are 17 known genome classes of DNA/RNA, if a codon 

codes for one amino acid in one class of DNA but another amino acid in a different DNA/RNA 

class, the degeneracy will be preserved so that the pattern of Fig. 1 is invariant over all 17 

genome classes of DNA/RNA (Petoukhov, 2005).  Also note that bit strings of adjacent codons 

that make up an amino acid necessarily differ by a single bit because of the nature of binary 

reflecting Gray code 

  

                

                

                

                

                

                

                

                

 
Figure 1.  High and low degeneracy amino acids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 6



27 18 12 18 12 8 12 18 

18 27 18 12 8 12 18 12 

12 18 27 18 12 18 12 8 

18 12 18 27 18 12 8 12 

12 8 12 18 27 18 12 18 

8 12 18 12 18 27 18 12 

12 18 12 8 12 18 27 18 

18 12 8 12 18 12 18 27 
 
 
 
Figure 2a.   RNA matrix of amino acids – Gray Code ordering 
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27 18 18 12 18 12 12 8 

18 27 12 18 12 18 8 12 

18 12 27 18 12 8 18 12 

12 18 18 27 8 12 12 18 

18 12 12 8 27 18 18 12 

12 18 8 12 18 27 12 18 

12 8 18 12 18 12 27 18 

8 12 12 18 12 18 18 27 
 
 
 
Figure 2b.   RNA matrix of amino acids – Binary ordering 
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Figure 2c.   “The Music of the Genes”.   A quilt pattern by Elaine Ellison. 
 
 

     Notice that in M2 the natural numbers 4,6,9 appear while in M3  the natural numbers 8, 12,18, 

27 appear, with each row and column having the same sequence of positive integers with no 

integer appearing adjacent to itself in a row or column.  These sequences come from a triangle of 

numbers attributed to the 2nd century AD Syrian mathematician Nicomachus (Kappraff, 2000) 

and represent successive sequences of musical fifths.  The Nicomachus Triangle, T(n,k), is 

reproduced in Table 1 where the integers in the n-th row are   Here if 

the central integer 6 is thought to be the length of a string representing a fundamental tone, then 

4 and 9 of row 3 represent the string lengths corresponding to rising and falling musical fifths, 

ratios of 2:3 and 3:2.  Also the fifth row represents the string lengths that give rise to a pentatonic 

.0};0,32{ ≥≤≤− nnkkkn
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scale with fundamental string length of 36 units while the integers in row 7 represent string 

lengths of a heptatonic scale with216 as the string length of the fundamental.  The Triangle 

T(n,k) in Table 1 has the property that every row, column, diagonal, and line joining any two 

elements contains a nontrivial geometric progression.  

Table 1.  The Nicomachus Triangle,  T(n,k)               Table 2. Pascal’s Triangle 

                 1                                                                          1 
                    2    3                                                                    1    1   
                    4    6     9                                                             1    2    1 
                    8   12   18   27                                                     1    3    3    1                                                                                                    
                16  24   36   54   81                                              1    4    6    4    1 
                   32  48   72   108  162  243                                            etc. 
                   64  96  144  216  324  486  729                  
                              etc.   
                                                         
 
T(n,k) is the triangle of coefficients in the expansion of (2 + 3x)n;  given by the generating 

function 
)32(1

1
xy +−

.    For example, 8,12,18,27 are generated by 

  where we see that there is one 8, one 27, three 12’s and 

three 18’s in each row or column of matrix M

=+ 3)32( x 32 271831238 xxx +×+×+

3.  Furthermore if we set x = 1 we find the sum of 

the elements in each row or column of Mn equals 5n.  For M3 the sum = 125.   In other words, 

successive integers from a row of the Nicomachus triangle are multiplied by successive integers 

from rows of Pascal’s Triangle, given in Table 2, e.g., (1, 3, 3, 1) • (8, 12, 18, 27)  where •  

denotes dot product in order to sum the row and column elements of M3.    

       Petoukhov has shown that, 

                                         =                                                                       (6) 2/1
11 MP = ⎥

⎦

⎤
⎢
⎣

⎡
ττ
ττ

/1
/1

where 
2

51+
=τ  is the golden mean.  Associating τ  with 11 and 00, and τ/1 with 10 and 01, 

we obtain matrices of the square roots of each of the higher matrices denoted by .  For 
example,  

nM nP
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                                                                                (7) == 2/1
22 MP

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

1/11
11/1
/111
1/11

22

22

22

22

ττ
ττ

ττ
ττ

1010 corresponds to ,  2τττ =× 1100 corresponds to , and 2/1/1/1 τττ =× 1011 corresponds to 

1/1 =× ττ  

                                         3. GENERALIZED BISYMMETRIC MATRICES 
 
     We have been successful in generalizing Petoukhov’s RNA matrices to bisymmetric matrices 

of the form 

                               M1 =                                                                                           (8a) ⎥
⎦

⎤
⎢
⎣

⎡
ab
ba

 
     The higher order matrices Mn are determined in a similar manner as was done for the 

matrix with a = 3 and b=2.  They contain columns and rows with integers from each 

column of the generalized Nicomachus Triangle in Table 3 with multiplicities given by 

Pascal’s Triangle.  For example, analogous to Matrix 3b, using elements of row 3 of 

Table 3,  

                                    M2 =                                             (8b) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

22

22

22

22

aabbab
abaabb
babaab
abbaba

Table 3.  Generalized Nicomachus Triangle 

                        1 
                         b    a                                                                                                       (9)                         
                         b2   ab    a2

                         b3   ab2   a2b   a3

                         b4   ab3   a2b2  a3b   a4                                            
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The elements of Mn are generated by (b + ax)n with each row and column of Mn  summing to 

(a+b)n.   On the other hand in Sections 4, 5, and Appendix B we show that the square root of the 

 and  matrices can be expressed as, 1M 2M

          P1 =     and   P⎥
⎦

⎤
⎢
⎣

⎡
αβ
βα

2 =                                                        (10a,b) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

22

22

22

22

ααββαβ
αβααββ
βαβααβ
αββαβα

 where,   

                             
β

α
2
b

=          and   
2

22 baa −−
=β  .                                                  (11a,b)     

 
                      
    Therefore α  and β  are real for a>b and complex for a<b.  Since , it follows that, 1

2
1 MP =

 
                                                    ,  22 βα +=a αβ2=b  ,                                                     (12a,b)  
 
and from this it follows that, 
 

                                ba +=+ βα , and 
b
a2

=+
α
β

β
α                                                       (13a,b) 

Also, α  and β   are roots of the fourth degree polynomial,                        
                  
                                                                                                      (14) 0)( 222224 =++− βαβα xx
 
Making use of Equations 11a,b,  Equation 14  is rewritten, 
 

                              0
4

2
24 =+−

baxx                                                                                           (15) 

where using Equation 11a and 12a, 
 

                           2
2

2

4
β

β
+=

ba                                                                                                    (16) 

 
Equation 15 can also be rewritten as, 
 

                      
4

2
24 baxx −= ,                                                                                                       (17) 
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and if we consider the geometric sequence, 
 
                      1, ,  , , , …                                                                                         (18)   2α 4α 6α 8α
where , 
 

                42
2

222

4
−− −= nnn ba ααα ,                                                                                           (19) 

this corresponds to a generalized “Fibonacci” sequence,  {cn} in which, 

                   and 1,0 21 == cc 2

2

1 4 −− −= nnn cbacc  .                                                                    (20a) 

The ratio of successive terms, 
n

n

c
c 1+ approaches 2α  in the limit where, in the case that α is 

complex, then 2α  denotes the square of the absolute value.  Also 
n

n

c
c 1+ approaches 2α  from 

below.   
 
   If we let   then   can be shown to satisfy the recursion, ,21

2
−−−= kknn cccg ng

 

                          .)
416

( 2

224

1
2

−− −+= nnn gbabgag                                                                         (20b) 

 
Setting b = 2 and letting  ,  Equation 16 reduces to, 22 ±= Na
 

                              21 22
2 ±=+ Nβ

β
  and     βα /1= .                                                         (21a,b) 

. 
It follows that, 
 

               N=β
β

µ
1                                                                                                               (22a) 

 
Since βα /1= ,  Equation 22a is rewritten, 
 

                           N=
α

α 1
µ                                                                                                     (22b) 

                   
We refer to solutions of the equations,   
 
                              x - 1/x = N   and x  +  1/x = N                                                                       (23) 
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as the N-th silver means of the first and second kind respectively and denote them as  

and (Kappraff, 2000b).  When N = 1, 

)(1 NSM

)(2 NSM τ== )1(1SMx , the golden mean.   Therefore, in 

Equation 22b, α =  or  )(1 NSM α = .    )(2 NSM

     As a result of Equation 23, α  satisfies one of the equations, 
 
                                                                                                                                  (24) 12 ±= Nxx
  
Therefore, the sequence  
  
                             1, ,  , , , …                                                                                  (25) 1α 2α 3α 4α
 
is a generalized Pell sequence (Kappraff, 2000b) and satisfies the recursion, 
 
                                                                                                                       (26) 21 −− ±= nnn N ααα
 
as does the sequence,  where, }{ kc
 
                                                                                                                        (27a)  21 −− ±= kkk cNcc

where 
n

n

c
c 1+ approaches α  in the limit.  We also find that when b = 2, Equation 20b has the 

special solution:  i.e.,  ,kgn =
 
                                       for all n                                                                   (27b) kccc kkn =− −− 21

2

 
This means that if k = 0, the sequence {cn} is a geometric sequence.  Otherwise it is an 
approximate geometric sequence. 
 
     We consider eight examples: 
 
Example 1:  a = 3, b = 2, N=1.  τα == )1(1SM  and τβ /1= ,  row and column elements are 

generated by ,  row and column sum = ,  Sequence 20 yields {0,1,3,8,21,…}, even 

indexed  Fibonacci terms with ratio of successive terms approaching   In Equation 27b, we 

find that k = 1.  The golden mean has found many applications.  LeCorbusier made it the basis of 

his Modulor system of architectural design (Kappraff, 2000c). 

nx)32( + n5

.2τ
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Example 2:  a = 6 , b = 2,  N = 2.  Replacing this into Equation  11 yields  21)2(1 +== SMα , 

21
1
+

=β ,  row and column elements are generated by ,  row and column sum =   

Sequence 20a yields:  {0,1,6,35,204,…}, approaching .   In Equation 27b, we find that k = 1.  

The proportion, 

nx)62( + n8

2β

21+  is commonly know as the silver mean and was the basis of the system of 

proportions used in the Roman empire (Kappraff, 2000c). 

 
Example 3: a = 5, b = 4,  2=α ,  1=β , row and column elements generated by (4 + 5x)n,  row 

and column sum = 9n .  Sequence 20, i.e., 15 4n n nc c c 2− −= − ,  yields : {0,1,5,21,85,341,1365,…} 

= }
3

14{ −
=

n

nc  as the ratio of successive terms tends to 4. 

 
Example 4: a = 5, b = 3,  2/3=α ,  2/1=β ,  row and column elements generated by 

,  row and column sum = .  The generalized Nicomachus Triangle in Table 4 is 

generated from  

nx)35( + n8

).0}(53{ nkkkn ≤≤×−

                                    Table 4.  Generalized Nicomachus Triangle Generated by (3,5) 
 
                                                         1 
                                                         3       5 
                                                         9     15    25 
                                                        27    45    75  125 
                                                        81  135  225  375  625  
 
Each column of this Triangle represents a sequence of musical fifths and recreates the ancient 

Pythagorean scale, whereas any three successive columns generates the tones of the ancient Just 

scale (Kappraff, 2000), (McClain, 1976).   
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Example 5: a = 4, b = 3,  
2

74 +
=α ,   

2
74−

=β ,  row and column elements generated 

by ,  row and column sum = . nx)34( + n7

 
Example 6: a = 7, b = 2, N = 3, ,  , row and column elements 

generated by ,  row and column sum =  

2
2 )3( τα == SM 2/1 τβ =

nx)72( + n9

Example 7: a = 1, b = 1, 1/ 2α = , 1/ 2β = . Row and column elements are generated by 

(1 )nx+ . 
 
All elements of the generalized Nicomachus Triangle (see Table 3) are ones but taking into 

account multiplicity yields Pascal’s Triangle  (see Table 2) whose (n,k)-th element is equal to 

.
)!(!

!
knk

n
−

 

The ratio of successive terms in Sequence 20, i.e., 1,0 21 == cc  and 1
1
4n n nc c c−= − 2− ,                         

yields:  1, ¾, 2/3, 5/8, 3/5, 7/12, 4/7, … approaching the value of ½.  These ratios are the 

fundamental, musical fourth, fifth, minor sixth, major sixth of the ancient Just scale, and two 

approximations to the major and minor sevenths, all approaching the octave value of ½.  If the 

modulus M of a pair of successive approximating fractions a/b and c/d is defined as  

M = (ad – bc) then all moduli of the approximating sequence have the value 1, e.g., (1x4 – 1x3) 

= 1, (3x3 – 4x2) = 1, etc.  As a result, the approximating fractions appear as elements of 

successive rows of the Farey Table to the right of ½ (Kappraff, 2000b).   

Example 8:  a = 1, b = 2,  N = i,  ,  ,  row and column terms are 

generated by ,  row and column sum = .  The generalized Nicomachus Triangle yields,  

6/
1 )( πα ieiSM == 6/πβ ie−=

nx)2( + n3
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Table 5. Generalized Nicomachus Triangle Generated by (1,2) 
                 
                                  1 
                                  2   1 
                                  4   2   1  
                                  8   4   2   1 
                                 16  8   4   2   1 
 
Multiplying the elements of Table 5 by the elements of Pascal’s Triangle to account for 

multiplicity yields the square of Pascal’s Triangle, a triangle whose (i,j)-th entry is (i,j)x2i-j where 

(i,j) is the element of the i-th row and j-th column of Pascal’s Triangle. 

                 
Table 6.  Square of Pascal’s Triangle 
 
                                     1                              
                                     2    1 
                                     4    4    1 
                                     8   12   6   1   
                                    16  32  24  8   1    
 
The rows of Table 6 give the number of vertices, edges, faces, cells, etc of hypercubes, of 

increasing dimension, e.g., H0 (point) V = 1; H1 (line segment) V = 2, E = 1; H2 (square) V = 4, 

E = 4,  F=1;  H3 (cube) V =  8, E = 12, F = 6, C = 1; H4 (tesseract) V = 16, E = 32, F = 24, C = 8, 

hypercube = 1.  Sequence 20 generates the sequence:  0,1,1,0,-1,-1,0,1,1,…,  and the ratio of 

successive terms should approach 2α = 1.  In fact, the ratio of a subsequence approaches 1 

identically as it should.  In Eq. 27b, we find once again that k = 1. 

     If a = 2, b = 1, then the generalized Nicomachus Triangle is identical to the one for a = 1, b = 

2 but the columns are in reverse order.  On the other hand 
2

32 +
=α  and 

2
32 −

=β . 
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4. PYTHAGOREAN TRIPLES AHD THE SQUARE OF A 2x2  
BISYMMETRIC MATRIX 
    
For x,y real numbers with x>y,  and  
 

                                            M =                                                                                    (28) ⎥
⎦

⎤
⎢
⎣

⎡
xy
yx

 
The square of this matrix is, 
 

                                 M2 = = .                                                       (29) 
2

⎥
⎦

⎤
⎢
⎣

⎡
xy
yx

⎥
⎦

⎤
⎢
⎣

⎡

+
+

22

22

2
2

yxxy
xyyx

 
Notice that M2 has values that are the hypotenuse and altitude of a right triangle whose base is 

.  As a result, if x and y are integers, then { } is a Pythagorean triple, 

i.e., three integer sides of a right triangle. 

22 yx − 2222 ,2, yxxyyx −+

       Compare this with the complex number x + iy and its square, .  

Here the argument of x+iy is doubled while its modulus is squared, i.e., if 

ixyyxiyx 2)( 222 +−=+

xy /tan =θ  then 

22
22tan

yx
xy
−

=θ  while the modulus squares from 22 yx + to  as shown in Figure 3.  

The hypotenuse of this triangle is  so that it is identical with the triangle in Figure 3.          

22 yx +

22 yx +

 

2xyx2 + y2

[x2 + y2]1/2

y
θ

θ

x2 - y2
x

2xyx2 + y2

[x2 + y2]1/2

y
θ

θ

x2 - y2
x

 

Figure 3.  Pythagorean triples 
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We now identify    with the ordered pair (x,y) or equivalently with the complex number 

x + iy so that 

⎥
⎦

⎤
⎢
⎣

⎡
xy
yx

xy /tan =θ =c.  It can be shown that the ordered pair, (c,1), corresponds to a 

triangle with the radius r of the inscribed circle, and area A given by, 

                                              ,  1−= cr )1)()(1( +−= cccA  
 
It follows that the radius r of the inscribed circle and the area of triangle (a,b) is, 
 
         and       (30a,b) 22 )1/( babbabr −=−= )()1/)(/)(1/( 224 baabbabababA −=+−=
 
It also follows from Equations 30  that, 

                                                 
tersemiperime

arear =  

 
where this equation holds for triangles that are not right triangles. 
 
 
                                5. SQUARE ROOT OF A 2X2 BISYMMETRIC MATRIX 
 
 It follows from Equation 29 that, 
 

                      =   
2/1

22

22

2
2

⎥
⎦

⎤
⎢
⎣

⎡

+
+

yxxy
xyyx

⎥
⎦

⎤
⎢
⎣

⎡
xy
yx

 
We now pose the problem to find x and y such that, 
 

                                                .                                                                  (31) =⎥
⎦

⎤
⎢
⎣

⎡
2/1

ab
ba

⎥
⎦

⎤
⎢
⎣

⎡
xy
yx

 
where a is the hypotenuse and b is the altitude of a right triangle with vertex angle θ  whose base 

is 22 ba − ,  22/tan bab −=θ and xy /2/tan =θ .   As a result, using standard trigonometric 

identities, 

                    
θ
θθ

cos1
cos12/tan

+
−

=    where  
a

ba 22

cos −
=θ  
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After some algebra, 
 

                         
b

baa 22

2/tan −−
=θ  

 
which implies that, 

                                and  kbx = )( 22 baaky −−= .                                                              (32) 
 

But, since the hypotenuse of the right triangle with vertex 2/θ  is a , 
 

                                              ayx =+ 22                                                                             (33) 
 
Replacing Equations 32 into 33 and solving for k it follows after some algebra that, 
 

                                  
y

bx
2

=     and   
2

22 baay −−
=  

 
which agrees with Equations 11a and b. 
 
 
                                  6. PYTHAGOREAN TRIPLES AND POWERS OF 2X2                     
                                      BISYMMETRIC MATRICES 
 
     For  a,b natural numbers with a>b,  even powers of an arbitrary 2x2 bisymmetric matrix, 
                 

                                                            
n

ab
ba 2

⎥
⎦

⎤
⎢
⎣

⎡

 
results in a sequence of pairs of whole numbers that are hypotenuse and side of Pythagorean 

triples for all values of n.  The third side will be powers of .  If 22 ba − cba =− 22 for c a 

natural number, i.e., if {a,b,c} is a Pythagorean triple,  then all powers of  the bisymmetric 

matrix results in hypotenuse and side of  Pythagorean triples with the third side being powers of 

c.  It should be noted that the first number of these Pythagorean triples, a, represents the length of 

the hypotenuse unlike the first number of (a,b) which was the length of a side.  
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Example 1:  (3,2) 
 

 =   Therefore the Pythagorean triple is {13,12,5} 
2

32
23
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
1312
1213

 
2223 2 =−×=r   and   30)23)(23( 22 =−×=A

 
4

32
23
⎥
⎦

⎤
⎢
⎣

⎡
=   with {313,312,25} ⎥

⎦

⎤
⎢
⎣

⎡
313312
312313

 

=⎥
⎦

⎤
⎢
⎣

⎡
6

32
23

⎥
⎦

⎤
⎢
⎣

⎡
313312
312313

⎥
⎦

⎤
⎢
⎣

⎡
1312
1213

= with {7813,7812,125} ⎥
⎦

⎤
⎢
⎣

⎡
78137812
78127813

 
Example 2:  a=5, b=4 where {5,4,3} is a triple. 
 

2

54
45
⎥
⎦

⎤
⎢
⎣

⎡
= with {41,40,9} ⎥

⎦

⎤
⎢
⎣

⎡
4140
4041

 
where    and   5445 2 =−×=r 180)45)(45( 22 =−×=A
 

3

54
45
⎥
⎦

⎤
⎢
⎣

⎡
= = with {365,364,27} ⎥

⎦

⎤
⎢
⎣

⎡
4140
4041

⎥
⎦

⎤
⎢
⎣

⎡
54
45

⎥
⎦

⎤
⎢
⎣

⎡
365364
364365

 
 
                                                        7. CONCLUSION 
 
   Petoukhov’s RNA matrices have led to a generalization of the golden mean, generalized 

Fibonacci sequences, generalized Nicomachus Triangles, and to an algorithm for generating 

Pythagorean triples.  Pascal’s Triangle plays an important role.  Although Petoukov’s matrices 

reproduce the sequences of musical fifths found in the rows of the Nicomachus Triangle, there is 

no obvious connection between the genomic matrices and the musical scale. 
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APPENDIX A 

Petoukhov’s Matrix Genetics : 

   We have demonstrated the symmetry that is uncovered when the ensembles of genetic multiplets and 

other genetic elements are represented by the Petoukhov matrices, and we have shown how this symmetry 

results in analyzing certain patterns in the evolution of all of the known classes of genetic code (These 

classes are shown on the NCBI site http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi).  We 

have also shown that generalizations of these matrices reveal sturdy mathematical structures bringing 

together generalizations of the golden mean, Fibonacci sequences, new characterizations of Pythagorean 

triples, and mathematical structures that generalize the musical scale of Pythagoras.    

   This work calls attention to the broader results that Petoukhov has expressed through his papers and 

books (Petoukhov, 2008 a,b).  Petoukhov states that one of the most important tasks of science is to find a 

way of creating order in the study of genetic coding.  The work of Petoukhov describes the utility of 
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matrix methods to represent and to analyze hierarchical systems of genetic coding for mathematical 

classification and modeling of natural forms. This work demonstrates applications to the ordering of 

genetic code of special algebras, and other well-known mathematical structures such as Hadamard 

matrices, double numbers, transformations of hyperbolic turns, the golden section, the Pythagorean 

musical scale, etc. The results of his analysis suggest that living substances have their own forms of 

creating order and that these forms are connected with special algebras which are new to biomathematics. 

These algebras are related to special multidimensional geometries. They permit the development of new 

models in the fields of molecular genetics, bioinformatics and mathematical biology in general. A 

discovery of these algebras leads to the construction of biological theories on the basis of a language of 

biological algebras.  Petoukhov’s results suggest that many difficulties in the mathematizing of biology 

may be due to inappropriate numerical systems (algebras) which are utilized to describe biological 

structures. These difficulties can be compared to problem which Hamilton faced when he tried for many 

years to find a description of properties of 3D space by means of algebras of 3-dimensional numbers until 

he realized that these required the new four dimensional algebra of quaternions.  

                                                                APPENDIX B 
Theorem :     where, 2

2
2 MP =

 

     M2 =       and      P

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

22

22

22

22

aabbab
abaabb
babaab
abbaba

2 =    

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

22

22

22

22

ααββαβ
αβααββ
βαβααβ
αββαβα

. 
Proof: 
 

Let   P1 =   ,   Q⎥
⎦

⎤
⎢
⎣

⎡
αβ
βα

1 =  .,  M⎥
⎦

⎤
⎢
⎣

⎡
βα
αβ

1 =    and N⎥
⎦

⎤
⎢
⎣

⎡
ab
ba

1 =                                                                ⎥
⎦

⎤
⎢
⎣

⎡
ba
ab

 
P2 and M2 can then be rewritten, 
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               P2 =     and   M⎥
⎦

⎤
⎢
⎣

⎡

11

11

PQ
QP
αβ
βα

2 =  . ⎥
⎦

⎤
⎢
⎣

⎡

11

11

aMbN
bNaM

 
Using Eq. 12a and b, ,  22 βα +=a αβ2=b , and  it follows immediately that, 
 
                                                          2

2
2 MP =

 
It follows by induction that   where, nn MP =2

 

               Pn =     and   M⎥
⎦

⎤
⎢
⎣

⎡

−−

−−

11

11

nn

nn

PQ
QP
αβ
βα

n =  . ⎥
⎦

⎤
⎢
⎣

⎡

−−

−−

11

11

nn

nn

aMbN
bNaM
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