"ЗОЛОТЫЕ РЯДЫ" ФИБОНАЧЧИ С ПРОИЗВОЛЬНЫМИ НАЧАЛЬНЫМИ УСЛОВИЯМИ

Числа Фибоначчи, появившиеся восемь веков назад в «задаче о кроликах», до сих пор остаются одним из увлекательных разделов теории чисел.

Их особое применение в математике связано, в частности, с решением Ю. Матусевичем десятой проблемы Гильберта, поиском экстремума унимодальных функций, определением точности представления чисел цепными дробями и др.

Замечательные свойства проявляются при сопоставлении чисел Фибоначчи.

В частности, отношение соседних элементов с ростом их номеров устремляется к своей асимптоте – "золотому" сечению (3С).

Примечательно, что данным свойством обладают только ряды, построенные по рекуррентной схеме сложения двух предшествующих значений (в общем случае с произвольными начальными условиями). Все остальные последовательности, если они не являются тривиальной модификацией упомянутых рядов, в асимптотике приводят к иным закономерностям, безмерно далеким от "золотого" сечения.

В связи с этим некоторое недоумение вызывает, например, повышенное рекламирование в рамках теории ЗС так называемых «металлических пропорций», и почему-то преподносимых как новый научный результат.

Во-первых, числовые последовательности с характеристическим многочленом второго порядка $x^2 - mx - q$ были впервые введены и описаны еще французским математиком Франсуа Люком (1842–1891). В математике они и сегодня называются последовательностями Люка (не следует отождествлять с числами Люка, как частным случаем) и имеют вид:

$$(F_0, F_1) = (0, 1), F_{n+1} = mF_n + qF_{n-1};$$

 $(L_0, L_1) = (2, m), L_{n+1} = mL_n + qL_{n-1}.$

При m = q = 1 они образуют соотвественно известные числа Фибоначчи и Люка.

Им же получены явные формулы $F_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}$, $L_n=\alpha^n+\beta^n$, где α , $\beta=\frac{m\pm m}{2}$ — корни характеристического уравнения $x^2-mx-q=0$, $m=\sqrt{m^2+4q}$.

Позже в 1972 г. в более обобщенном представлении ряды описаны В. Хогаттом [1] на основе модифицированной пирамиды Паскаля в виде генератора с производящей функцией

$$A(z) = \frac{1}{1 - az - bz^p - cz^r},$$

которая воспроизводит многие известные «числовые семейства»: последовательности Люка, Трибоначи, p-числа Фибоначчи и др.

Во-вторых, в "металлических" сечениях и адекватных им последовательностях нет ни малейшего признака или намека на 3C.

Да, они сохраняют аддитивно-рекуррентную систематику Фибоначчи.

Также, бесспорно, что они расширяют сферу математических пропорций и играют отведенную им роль в общей гармонии мироустройства.

Но очевидно и то, что как в фиксированном проявлении, так и в своей асимптотике они содержат числа или их свойства, которые уже не имеют никакого отношения к "золотому" сечению.

В равной степени это относится к замечательным последовательностям Трибоначчи, *р*-сечениям А. Стахова [2], обобщениям О. Кузьмина [3] и многим другим.

В тоже время анализ рядов Фибоначчи с явными признаками 3С, как правило, ограничивается их рассмотрением с узким набором начальных условий.

То есть налицо явный перекос.

С одной стороны, увлечение пропорциями и сечениями, возможно, очень важными, но не имеющими отношения к 3С. С другой стороны, наоборот предание забвению целого направления исследований, действительно являющегося источником (прародителем) 3С.

Целью данной работы является расширение характеристик рядов Фибоначчи, обладающих свойствами "золотого" сечения, на произвольные начальные условия.

Основная задача состоит в привлечении внимания "исследователей-золотоискателей" к незаслуженно забытому множеству чисел Фибоначчи, новые возможности которых открывает концепция рационального "золотого" сечения [4].

Все нижеприведенные обобщения выполнены автором самостоятельно.

Однако, учитывая давнюю историю чисел Фибоначчи и повышенный к ним интерес во многих уголках мира, вполне допустимо и даже наверняка, что некоторые из полученных соотношений уже кем-то описаны в научной литературе.

Именно поэтому (чтобы не тратить зря время), детальный поиск работ не проводился. В любом случае, уже само по себе объединение разноаспектных свойств этих необычайно интересных математических конструкций с наличием свойств 3С представляется полезным.

1. Для начала предлагается использовать простую классификацию:

числа Фибоначчи — классическая последовательность $F_{n+1} = F_n + F_{n-1}$ с начальными условиями $(F_0, F_1) = (0, 1)$;

обобщенные числа или ряды Фибоначчи – последовательности $f_{n+1} = f_n + f_{n-1}$ с произвольными начальными условиями (f_0, f_1) , не равными одновременно нулю;

обобщенные последовательности Φ ибоначчи — все другие обобщения аддитивнорекуррентного вида, не обладающие признаками "золотого" сечения.

2. Как известно, числа Фибоначчи 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... однозначным образом генерируется с помощью аддитивной рекуррентной (возвратной) процедуры:

$$\left(F_0,F_1\right)\!=\!\left(0,1\right)\!,\ F_{n+1}=F_n+F_{n-1},\ n\geq 1\,,$$

но могут определяться и аналитически по формуле Бине

$$F_n = \frac{\Phi^n - (-\Phi)^{-n}}{\sqrt{5}} = \frac{\Phi^n - (-\Phi)^{-n}}{\Phi^1 - (-\Phi)^{-1}},$$
(1)

где $\Phi = \frac{1+\sqrt{5}}{2}$ — константа "золотого" сечения или число Φ идия.

Нетрудно проследить, что эти же числа могут быть сформированы по общим правилам рационального 3C [4] с помощью следующего рекуррентного генератора

$$F_2 = 1$$
, $F_n = \langle F_{n-1} \Phi \rangle$, $n \ge 3$.

где $\langle z \rangle = \lceil z + 0.5 \rceil$ — ближайшее целое к z , если z > 0 ;

 $\lceil z \rceil$ – целая часть от z (наибольшее целое число, не превосходящее z),

а также аналитически $F_n = \langle \Phi^n / \sqrt{5} \rangle$, то есть число Фибоначчи F_n – есть ближайшее целое к $\Phi^n / \sqrt{5}$ [5, c. 27].

Аналитика обобщенных чисел Фибоначчи

3. Обобщенные ряды Фибоначчи с произвольными начальными условиями (затравочными числами) f_0 , f_1 имеют вид $(n \ge 2)$

$$f_n = f_{n-1} + f_{n-2}$$
.

или

$$f_n = f_1 F_n + f_0 F_{n-1} = f_1 \frac{\Phi^n - (-\Phi)^{-n}}{\sqrt{5}} + f_0 \frac{\Phi^{n-1} - (-\Phi)^{-(n-1)}}{\sqrt{5}}.$$

Влияние отрицательных степеней $(-\Phi)^{-n}$ резко ослабевает с увеличением n.

Учитывая, что $F_n = \langle \Phi^n / \sqrt{5} \rangle$, при $n \ge 1$ справедлива расчетная формула

$$f_n = f_1 \left\langle \frac{\Phi^n}{\sqrt{5}} \right\rangle + f_0 \left\langle \frac{\Phi^{n-1}}{\sqrt{5}} \right\rangle. \tag{2}$$

Обобщенные числа Фибоначчи можно выразить также в явном виде средствами комбинаторики через биномиальные коэффициенты $C_n^{\ i} = \binom{n}{i} = \frac{n!}{i! \ (n-i)!}$, где $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n - \phi$ акториал от n с условным принятием 0! = 1

$$f_n = f_1 \sum_{i=0}^{\lceil (n-1)/2 \rceil} C_{n-1-i}^i + f_0 \sum_{i=0}^{\lceil (n-2)/2 \rceil} C_{n-2-i}^i.$$

4. Известно, что соседние числа Фибоначчи F_n , F_{n+1} взимно просты [5, с. 45], то есть не имеют общих делителей. Распространим это свойство на ряд f_n , для чего напомним сравнимость чисел по модулю [6, с. 41]: $a = b \pmod{m}$ числа a и b при делении на m дают один и тот же остаток, что равносильно делимости разности a-b на m и возможности представления a в форме a = b + mt, где t — целое.

Утверждение. Соседние числа f_n, f_{n+1} имеют только те общие делители, что и затравочные числа f_0, f_1 .

То есть для любого общего делителя m имеет место соотношение $f_0, f_1 = 0 \pmod{m} \Rightarrow f_n = 0 \pmod{m}$.

Данное утверждение легко доказывается по индукции (обратным ходом от n к 1) с учетом равенства $f_{n-1} = f_{n+1} - f_n$ и известного свойства: сумма и разность двух чисел имеют те же общие делители, что и сами числа.

Следствие 1. Соседние числа f_n , f_{n+1} взаимно просты, если взаимно просты затравочные числа f_0 , f_1 .

Следствие 2. Общие делители затравочных чисел f_0 , f_1 являются собственными делителями любого члена ряда f_n .

Например, если f_0 , f_1 – четные числа, то и весь ряд состоит только из четных чисел

5. С учетом аддитивных свойств ряда f_n и его связи с числами Фибоначчи методом математической (полной) индукции можно получить ряд тождеств, например: обобщение главных уравнений, приведенных в работе [7, с. 107],

$$f_0 f_{n+k-1} + f_1 f_{n+k} = f_{n-1} f_k + f_n f_{k+1},$$

$$f_0 f_{(k+1) n-1} + f_1 f_{(k+1) n} = f_{n-1} f_{kn} + f_n f_{kn+1},$$

$$f_0 f_{n-1} + f_1 f_n = f_k f_{n-k+1} + f_{k-1} f_{n-k}.$$

Из последнего уравнения при k = n - k + 1 и замене n на 2n следует выражение для суммы квадратов двух соседних членов числовой последовательности

$$f_0 f_{2n} + f_1 f_{2n+1} = f_{n+1}^2 + f_n^2$$
,

или в иной записи через разность квадратов двух чисел с четными или нечетными номерами

$$f_0 f_{2n-1} + f_1 f_{2n} = f_{n+1}^2 - f_{n-1}^2$$
.

6. Основные четыре суммирующие уравнения [8] (для первых n членов ряда, чисел с четными или нечетными номерами, суммы квадратов), с расширением их сферы на произвольные начальные условия, приобретают вид:

$$\sum_{i=0}^{n} f_i = f_{n+2} - f_1,$$

$$\sum_{i=0}^{n} f_i^2 = f_n f_{n+1} + f_0^2 - f_0 f_1,$$

$$\sum_{i=0}^{n} f_{2i} = f_{2n+1} + f_0 - f_1,$$

$$\sum_{i=0}^{n-1} f_{2i+1} = f_{2n} - f_0,$$

7. Важным в практическом применении является обобщение соотношений, представленных в работе [8], для любых $k \le n$:

тождества Осагни

$$f_n f_{k+1} - f_{n+1} f_k = (-1)^k (f_1 f_{n-k} - f_0 f_{n-k+1}), \tag{3}$$

формулы Каталани

$$f_n^2 - f_{n+k} f_{n-k} = (-1)^{n-k} (f_k^2 - f_0 f_{2k}).$$

Из последнего уравнения при k=1 следует новая интерпретация формулы Кассини, связывающая три соседних числа с произвольными начальными условиями,

$$f_{n-1}f_{n+1} - f_n^2 = (-1)^n (f_1^2 - f_0^2 - f_0 f_1).$$

8. Представляется также важным асимптотика рядов Фибоначчи и их суммирование путем расширения уравнений [8] для $f_0 \ge 0, \ f_1 \ge 0$

$$d^2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{f'_n f'_{n+1}} = \Phi^{-1}, \qquad d^2 \sum_{n=1}^{\infty} \frac{1}{f'_n f'_{n+2}} = 1,$$

где
$$f'_n = f_0 f_{n+1} - f_1 f_n$$
, $d = f_0^2 - f_1^2 + f_0 f_1$.

Аналогичным образом через числа f'_n обобщаются уравнения Кларка [9]

$$d^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{f'_{n+1}f'_{n+2}} = \Phi^{-2}, \qquad d^{2} \sum_{n=1}^{\infty} \frac{1}{f'_{2n}f'_{2n+2}} = \Phi^{-2}.$$

и Хонсбергера [7, с. 136, с. 242]

$$d\sum_{n=1}^{\infty} \frac{f'_n}{f'_{n+1}f'_{n+2}} = 1, \qquad d\sum_{n=0}^{\infty} \frac{1}{f'_{2^n}} = \frac{7 - \sqrt{5}}{2}.$$

Следует заметить, что величины f_n'/d в вышеприведенных формулах, по сути, являются числами Фибоначчи, восстановленными из ряда f_n .

Произведение двух чисел $F_n F_{n+1}$ через члены последовательности f_n определяется из системы уравнений

$$\begin{cases} f_n = f_1 F_n + f_0 F_{n-1}, \\ f_{n+1} = f_1 F_{n+1} + (f_1 - f_0) F_n. \end{cases}$$

Для любых начальных условий остаются справедливыми и формулы ограниченных сумм Цезаро [7, с. 110] через биномиальные коэффициенты

$$\sum_{i=0}^{n} \binom{n}{i} f_n = f_{2n}, \qquad \sum_{i=0}^{n} \binom{n}{i} f_n 2^i = f_{3n}.$$

9. Если нам известно, что некоторое число m является числом обобщенного ряда Фибоначчи с любыми начальными условиями (f_0, f_1) , то исходя из равенства (2) и общего выражения $F_n = \left\langle \Phi^n / \sqrt{5} \right\rangle$, порядковый номер данного числа m в ряду Фибоначчи можно вычислить по формулам

$$n = \lceil a + 0.5 \rceil = \langle a \rangle, \qquad a = \frac{\ln(m\sqrt{5}) - \ln(f_1 + f_0\Phi^{-1})}{\ln\Phi}.$$

Сами обобщенные числа Фибоначчи — это рациональные "золотые" сечения для любого элемента последовательности с порядковыми номерами $n>\frac{\ln 2 + \ln(|f_1-f_0\Phi|)}{\ln \Phi}$ — согласно теореме С. Василенко [4].

10. Представляет интерес дуально-симметричная формула С. Алферова [11]

$$F_n \phi^{n+1} + F_{n+1} \phi^n = 1, \tag{4}$$

имеющая перекрестно-симметричную нумерацию $(n, n+1) \leftrightarrow (n+1, n)$ и объединяющая (через единицу) ряд чисел Фибоначчи с их асимптотой — "золотым" сечением; $\phi = \Phi^{-1}$.

Она напоминает по форме известную формулу Эйлера (а у него красивая математика)

$$q_n p_{n+1} - q_{n+1} p_n = (-1)^n$$
,

которая связывает числители p_n и знаменатели q_n подходящих дробей в разложении любого вещественного числа в виде цепной дроби и, в частности, разложении числа Φ , приводя к тождеству Осагни (3) при k = n и $(f_0, f_1) = (0, 1)$.

Соотношение (4) приведено в работе [11] без доказательства, но оно достаточно легко выводится с использованием формулы Бине (1):

$$F_n + F_{n+1}\Phi = \frac{\Phi^n - (-1)^n \Phi^{-n}}{\sqrt{5}} + \frac{\Phi^{n+1} + (-1)^n \Phi^{-n-1}}{\sqrt{5}}\Phi = \frac{\Phi^n + \Phi^{n+2}}{\sqrt{5}} = \Phi^{n+1} \frac{\Phi^{-1} + \Phi^1}{\sqrt{5}} = \Phi^{n+1},$$

откуда после деления на Φ^{n+1} приходим к (4).

Учитывая особенности данных преобразований, соотношение (4) можно обобщить на случай любого нечетного номера k = 1, 3, 5, ...

$$\frac{F_n \phi^{n+k} + F_{n+k} \phi^n}{F_k} = 1.$$

С произвольными начальными условиями f_0 , f_1 оно приобретает вид

$$\frac{f_n \phi^{n+k} + f_{n+k} \phi^n}{(f_0 \phi + f_1) F_k} = 1.$$
 (5)

В частности, для чисел Люка $L_n \Leftarrow (f_0, f_1) = (2, 1)$ получаем

$$\frac{L_n \phi^{n+1} + L_{n+1} \phi^n}{\phi + \phi^{-1}} = 1.$$

Возможно, формула (5) потеряла некоторое изящество по сравнению с (4), однако она охватывает больший круг закономерностей, присущих обобщенным рядам Фибоначчи.

11. Среди чисел Фибоначчи только две пары чисел $(1, F_{12} = 12)$ и $(1, F_6 = 8)$ являются соответственно квадратами и кубами натуральных чисел.

Обобщенные ряды теоретически содержат любые числа, включая квадраты, кубы и иные степени натуральных чисел.

Предварительный анализ таких рядов (*приложения* 1, 2) на примере $f_0 \in [0, 15]$ показывает, что подобные последовательности, как правило, содержат только одно квадратичное число, за исключением ряда с начальными условиями $(f_0, f_1) = (0, 2)$, который одновременно дает квадраты двух чисел: 2-х и 4-х. Самих таких рядов достаточно много.

Кубы целых чисел можно найти уже в меньшем количестве рядов и т.д.

По-видимому, это общее свойство обобщенных рядов Фибоначчи, которое при желании и определенной проработке можно доказать.

Частные разложения в цепные дроби.

<u>Минимальные сведения о цепных дробях.</u> Любое вещественное число *х* можно эффективно и единственным образом представить рациональным приближением в виде цепной дроби (конечной, если оно рационально; периодической, когда оно является квадратичной иррациональностью; бесконечной – для иррационального числа)

$$x = [a_0; a_1, a_2, a_3, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}},$$

где a_0 — целое число, все остальные элементы a_n — положительные целые (натуральные) числа, которые вычисляются рекурсивно:

$$a_0 = \lceil x \rceil, \quad x_0 = x - a_0, \qquad a_n = \lceil x_{n-1}^{-1} \rceil, \quad x_n = x_{n-1}^{-1} - a_n,$$

 $\lceil x \rceil$ – целая часть числа x.

Числители p_n и знаменатели q_n подходящих несократимых дробей для числа x могут быть определены по рекуррентным формулам Эйлера:

$$(p_0, p_1) = (a_0, a_0a_1 + 1), \quad p_n = a_n p_{n-1} + p_{n-2},$$

 $(q_0, q_1) = (1, a_1), \qquad q_n = a_n q_{n-1} + q_{n-2}.$

Они являются возрастающими последовательностями и связанны соотношением

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$$
.

Например, число Φ "золотого" сечения в своем разложении в цепную дробь состоит исключительно из единичных элементов $a_n=1$ так, что числители p_n и знаменатели q_n подходящих несократимых дробей являются числами Φ ибоначчи:

$$\Phi \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\ \hline 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \end{pmatrix} \quad \frac{a_n}{q_n}$$

То есть числа Фибоначчи представляют адекватное разложение Ф в цепную дробь.

Исследуя обобщенные ряды Фибоначчи f_n с произвольными начальными условиями, пока не удалось найти общей связи между элементами рядов и какими-либо числами, содержащими значение Φ .

Однако некоторые закономерности, все же прослеживаются.

В частности, разложение $f_1 + \Phi^{-1}$ содержит в числителях обобщенный ряд Фибоначчи с затравочными числами $(1, f_1)$, а знаменателях – обычные числа Фибоначчи (0, 1):

$$3 + \Phi^{-1} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \frac{4}{1} & 7 & 11 & 18 & 29 & 47 & 76 & 123 & 199 \\ 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \end{pmatrix} \begin{pmatrix} a_n \\ p_n \\ q_n \end{pmatrix} \qquad \frac{(1, f_1)}{(0, 1)} \Leftrightarrow f_1 + \Phi^{-1}$$

Соответственно для $\left(f_1 + \Phi^{-1}\right)^{\!-1}$ — числители и знаменатели меняются местами.

Разложение числа $f_0 - \Phi^{-1}$ приводит к числителям p_n подходящих дробей в виде ряда Фибоначчи с начальными условиями $(f_0, f_0 - 1)$, например, для $f_0 = 5$:

$$5 - \Phi^{-1} \Rightarrow \begin{pmatrix} 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 9 & 13 & 22 & 35 & 57 & 92 & 149 & 241 & 390 \\ \hline 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \end{pmatrix} \begin{pmatrix} a_n \\ p_n \\ \hline q_n \end{pmatrix} \qquad \underbrace{\begin{pmatrix} (f_0, f_0 - 1) \\ (0, 1) \end{pmatrix}}_{} \Leftrightarrow f_0 - \Phi^{-1}$$

Существуют и другие числа, которые в своем разложении в цепную дробь дают сразу два обобщенных ряда Фибоначчи

$$f_0 = 4 \\ 4 - \frac{\Phi^{-1}}{\sqrt{5}} \Rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \frac{4}{1} & 1 & 15 & 26 & 41 & 67 & 108 & 175 & 283 \\ 1 & 3 & 4 & 7 & 11 & 18 & 29 & 47 & 76 \end{pmatrix} \frac{a_n}{q_n} \qquad \frac{(f_0, 3f_0 - 1)}{f(1, 3)} \Leftrightarrow f_0 - \Phi^{-1}/\sqrt{5} = f_0 - 1 + \Phi/\sqrt{5}$$

$$\frac{d_{1} = 7}{d_{0} + 6} \Rightarrow \begin{pmatrix}
1 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\frac{1}{1} & 7 & 8 & 15 & 23 & 38 & 61 & 99 & 160 \\
\frac{1}{1} & 8 & 9 & 17 & 26 & 43 & 69 & 112 & 181
\end{pmatrix}
\frac{d_{n}}{d_{n}}$$

$$\frac{(1, f_{1})}{(1, f_{1} + 1)} \Leftrightarrow \frac{d_{0} + f_{1} - 1}{d_{0} + f_{1}}$$

Краткие выводы.

Обобщенные ряды Фибоначчи органически наполнены внутренним содержанием гармонической пропорции.

Двучленно-аддитивная рекурсия Фибоначчи выходит на "золотое" сечение для любых вещественных или комплексных затравочных чисел (начальных условий).

Все другие обобщенные последовательности и соответствующие им символьные структуры, расширяя представления о классе математических пропорций, уже не содержат "золотых" признаков и не являются систематикой общей теории "золотого" сечения.

Полученные соотношения для обобщенных чисел или рядов Фибоначчи (с произвольными начальными условиями) представляют определенный интерес для углубления теории рационального "золотого" сечения в целочисленных переменных [4] и развития соответствующих практических приложений.

Литература.

- 1. *Hoggatt V.E.* Generalized Fibonacci Numbers in Pascal's Pyramid // Fibonacci Quart. 1972. Vol. 10. № 3. P. 271–275, 293.
- 2. Витенько И.В., Стахов А.П. Теория оптимальных алгоритмов аналого-цифрового преобразования. В кн. Приборы и системы автоматики. Вып. 11. Харьков: ХГУ, 1970^{1} .
 - 3. Кузьмин О.В. Обобщенные пирамиды Паскаля и их приложения. М., 2000. 294 с.
- 4. *Василенко С.Л*. Основы теории рационального золотого сечения в целочисленных переменных // Академия Тринитаризма, М. Эл. № 77-6567, публ.15274, 08.05.2009. http://www.trinitas.ru/rus/doc/0232/012a/02322057.htm.
 - 5. *Воробьев Н.Н.* Числа Фибоначчи: 5-е изд. М.: Наука, 1984. 144 с.
 - 6. *Виноградов И.М.* Основы теории чисел: 10-е изд., стер. Спб.: Лань, 2004. 180 с.
- 7. Honsberger R. A Second Look at the Fibonacci and Lucas Numbers. Washington, DC: Math. Assoc. Amer., 1985.
 - 8. *Chahdra P.* Fibonacci Number. http://mathworld.wolfram.com/FibonacciNumber.html.
 - 9. Clark D. Solution to Problem 10262. Amer. Math. Monthly **102**, 467, 1995.
- 10. Василенко С.Л. Математические пропорции взаимодействия целого и его частей // Академия Тринитаризма, М. − Эл. № 77-6567, публ.15248, 23.04.2009. − http://www.trinitas.ru/rus/doc/0232/012a/02322040.htm.
- 11. *Алферов С.А*. О «серебрянности» и не только (открытое письмо с комментариями А.П. Стахова) // Академия Тринитаризма, М. Эл. № 77-6567, публ.13021, 24.02.2006. http://www.trinitas.ru/rus/doc/0232/009a/02320021.htm.

¹ Есть и другие работы А.П. Стахова по затронутой теме. Однако специально приведена именно первая публикация, чтобы показать приоритет Витенько – Стахова в разработке ими теории *p*-сечений.

Приложение 1 Параметры обобщенных рядов Фибоначчи, содержащих квадраты натуральных чисел $f_0,\,f_1$ — начальные условия, n — порядковый номер числа в последовательности, N — число в последовательности \hat{f}_0

N – число, квадрат которого равен f_n

f_0	f_1	n	N
0	1	2 3 4 6 5 6 12 7	1
0	2 3 2 5 8	3	2 3 4 5 8 12 13 21 24 34
0	3	4	3
0	5	5	4 5
0 0 0 0	8	6	8
ő	1	12	12
0	1 13 21	7	13
0	21	8	21
0	4 34	12	24
0	34	9 12	34
0	9	12	36 48
0	16 55	12 10 12 12	48 55
0	25 25	10	60
0	25 36	12	72
Ŏ	49	12	84
0	89	11	89
0	64	12	96
0	81	12 12	108
0	100	12	120
0	121 144	12 12 13 14	132 144
0	233	12	233
0	377	13	377
ő	610	15	610
0	987	16	987
0	646	18	1292
0	1597	17	1597
0	2584	18	2584
0	322	18 24 19	3864
0	4181 6765	20	4181 6765
0	1288	24	7728
ő	10946	20 24 21 24	10946
0	2898	24	11592
0	3001	25 24 22	15005
0	5152	24	15456
0 0 0	17711	22	17711
0	8050 11592	24 24	19320 23184
0	15778	24	27048
0	28657	23	28657
ő	12004	25	30010
0	20608	24	30912
0	26082	24	34776
0	32200	24	38640
0	38962	24	42504
0	27009	25 24	45015
0	46368 48016	24 25	46368 60020
0	75025	25	75025
0	121393	26	121393
0	196418	27	196418
0	317811	28	317811
0	208010	30	416020
0	514229	29	514229
0	832040	30	832040

f_0	f_1	n	N
1	6	9	15
1	10	9	19
1	9	10	23
1	18	10	32
1	33	10	43
1	8	14	57
1	66	11	77
1	19	14	86
1	209	13	221
1	257	13	245
1	224	14	291
1	271	14	320
1	1630	22	5374
1	1753	22	5573
1	8318	22	12138
1	8593	22	12337
1	5765	23	12854
1	8714	23	15803
1	4328	26	22923
1	4527	26	23444
1	79032	26	97949
1	79875	26	98470

f_0	f_1	n	N
3	8	5	7
3	2668	23	8747
3	248	29	11335
3	13831	23	19910
3	10372	25	27898
3	16441	25	35123
3	21220	25	39902
3	29601	25	47127
3	491807	29	502894
3	537147	29	525564

f_0	f_1	n	N
6	16	7	16
6	31	8	27
6	99	17	405
6	886	17	1192
6	729	21	2832
6	2619	21	5358
6	2849	21	5588
6	6011	21	8114
6	3030	23	9324
6	13039	23	19333

f_0	f_1	n	N
7	33	8	28
7	32	13	92
7	81	13	141
7	53	15	187
7	289	15	423
7	497	15	553
7	26638	32	240905
7	45622	32	315259
7	108069	32	485198
7	10010	38	625653

f_0	f_1	n	N
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6	5	6
2	5	7	9
2	13	9	22
2	11	11	33
2	34	11	56
2	32	13	88
2	89	13	145
2	87	15	232
2	233	15	378
2	585	15	598
2	231	17	609
2	633	15	622
2	59	21	812
2	610	17	988
2	253	19	1031
2	608	19	1596
2	1597	10	2585
2	2372	19 19	3150
2	564	22	3164
2	1595	21	
2	4181	21	4180
2		25	6766
2	720		7356
2	3739	22	8139
2	5172	22	9572
2	9381	21	10134
2	4179	23	10945
2	11947	22	14547
2	10946	23	17712
2	10944	25	28656
2	4751	27	30552
2	8450	26	32030
2	9025	27	42106
2	16738	26	45078
2	28657	25	46369
2	61033	25	67669
2	28655	27	75024
	47975	26	76315
2	38161	27	86578
2	65783	26	89363
2	61423	27	109840
2	75025	27	121394
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	121231	27	154312
2	140065	27	165866
2	27941	31	193953
2	75023	29	196417
2	196418	29	317812
2	196416	31	514228
2	160717	33	752638
2	514229	31	832041

	f_1	n	N
4	10	6	10
4 4	24 15	9 10	30 31
4	40	9	38
4	36	10	46
4 4	45 32	11 14	65 114
4	76	14	172
4 4	109 185	14 13	205 209
4	183	18	230
4	181	14	263
4 4	54 318	18 18	382 910
4	434	18	1062
4	894	18	1522
4 4	1082 1874	18 18	1674 2202
4	2142	18	2354
4	301	23	2949
4 4	2431 2735	22 22	6565 6963
4	6520	22	10748
4 4	7012 538	22 30	11146 21206
4	538 686	30	23934
4	23060	23	25708
4 4	17312 18108	26 26	45846 46888
4	5366	30	66834
4	45725	26	74505
4 4	47013 11270	26 30	75547 96846
4	11914	30	99574
4 4	24394 28046	30 30	142474 152766
4	42302	30	187614
4	62698	30	228406
4 4	83290 89930	30 30	263254 273546
4	120350	30	316446
4	122434	30	319174
4 4	146542 184762	30 30	349186 392086
4	187342	30	394814
4 4	229754 232630	30 30	437226 439954
4	280210	30	482854
4	316126	30	512866
4 4	319498 374878	30 30	515594 558494
4	388822	30	568786
4	437926	30	603634
4 4	499114 554554	30 30	644426 679274
4	571486	30	689566
4	644806	30	732466
4 4	2010 649618	42 30	734282 735194
4	703738	30	765206
4 4	784858 790166	30 30	808106 810834
4	874990	30	853246
4	880594	30	855974
4	223350	33	887256

	<u> </u>	ı	
f_0	f_1	n	N
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12	6	11
5	12	7	14
5	14 26	11 10	39 40
5	25	11	50
5	88	20	785
5	163	20	1060
5	208	20	1195
5	1570	17	1585
5	1618	17	1609
5	154	22	1668
5	249	22	2113
5	1363	20	3040
5	2048	20	3725
5	4583	20	5570
5	4808	20	5705
5	5283	20	5980 15598
5	13734 14529	22	16043
5	597	22 30	22345
5	772	30	25395
5	1177	30	31335
5	7512	30	79075
5	19977	30	128935
5	37512	30	176675
5	40077	30	182615
5	41427	30	185665
5	63772	30	230355
5	65472	30	233405
5	68847	30	239345
5	99052	30	287085
5	136447	30	336945
5	177852	30	384685 390625
5	183387 186262	30 30	393675
5	230952	30	438365
5	234177	30	441415
5	240522	30	447355
5	294597	30	495095
5	356922	30	544955
5	422197	30	592695
5	430702	30	598635
5	435102	30	601685
5	502137	30	646375
5	506887	30	649425
5	516202	30	655365
2	594147 681402	30 30	703105 752965
5	770547	30	800705
5	782022	30	806645
5	787947	30	809695
5	877327	30	854385
5	883602	30	857435
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	895887	30	863375
5	253660	33	945545
	•	•	•

f_0	f_1	n	N
8	20	7	18
8	44	11	66
8	30	15	146
8	128	13	176
8	85	17	379
8	348	15	464
8	558	15	586
8	654	15	634
8	229	19	989
8	924	17	1218
8	111	22	1433
8	236	21	1624
8	1012	19	2062
8	1069	19	2119
8	606	21	2586
8	2432	19	3192
8	2256	22	6328
8	1593	23	6767
8	6380	21	8360
8	7934	21	9322
8	7311	22	11383
8	2880 14956	25 22	14712
8	4177		16278
8	16716	25	17713
8	2750	23 27	21890 23262
8	8033	26	31237
8	10942	27	46370
8	43776	25	57312
8	27073	26	57333
8	48481	25	60313
8	19004	27	61104
8	33800	26	64060
8	36100	27	84212
8	66952	26	90156
8	64094	27	112206
8	28653	29	121395
8	93214	27	135314
8	114620	27	150048
8	152644	27	173156
8	75021	31	317813
8	111764	31	387906
8	300092	29	392834
8	62377	35	758701
8	196414	33	832042
8	682221	31	958363
_		_	

f_0	f_1	n	N
9 9	25 26	10	41
9	26 22	11	53
9	22 40	12	63
9	40	12 12	81 87
9	71	12	105
0	80	12	111
9 9	32	14	111
9	110	12	129
9 9 9	121	12	135
9	157	12	153
9	170	12	159
9	72	14	171
9 9	161	13	197
9	107	14	206
9	171	14	258
9	111	20	888
9	50	22	992
9 9	228	20	1257
9	137	22	1589
9 9 9	483	20	1818
9	1155	20	2802
9	2316	20	3963
9	3612	20	4947
9	4479	20	5508
9	5100	20	5877
9	3418	23	9905
9	14670	22	16122
9 9	15777 19745	22	16719 18703
9	12265	22 23	18752
9	1158	28	19230
9	5322	28	41148
9 9 9	5997	28	43677
9	21472	26	51061
9	22807	26	52624
9	13533	28	65595
9	38952	26	68769
9	40743	26	70332
9	7498	33	162625
9	200154	28	252216
9	236454	28	274134
9	240837	28	276663
9	280509	28	298581
9	29566	34	410662
9	31129	34	421375

f_0	f_1	n	N
10	26	8	26
10	75	11	85
10	91	11	93
10	53	15	190
10	283	15	420
10	115	22	1465
10	3115	22	7435
10	5956	22	10276
10	14896	22	16246
10	70446	29	190338
10	203999	29	323891
10	218857	33	878294

f_0	f_1	n	N
11	24	7	20
11	31	11	58
11	151	17	502
11	744	17	1095
11	6589	33	152471

f_0	f_1	n	N
12	297	25	4779
12	4341	23	11163
12	10672	23	17494
12	4921	25	19229
12	992	29	22670
12	41488	25	55796
12	65764	25	70246
12	469881	29	491559
12	560561	29	536899

f_0	f_1	n	N
13	28	6	17
13	32	8	29
13	28	9	35
13	116	13	170
13	295	14	338
13	424	19	1344
13	1477	17	1540
13	1705	17	1654
13	344	21	1963
13	1917	19	2837
13	4149	19	4169
13	4197	19	4193
13	300	26	6115
13	7364	21	8983
13	9363	26	33728
13	1709	31	48079
13	63300	26	87665
13	109463	26	115278
13	133923	26	127508
13	266645	31	599155
13	414604	31	747114

f_0	f_1	n	N
14	35	10	49
14	59	10	61
14	83	10	71
14	36	13	102
14	65	13	131
14	78	17	372
14	100	19	674
14	931	17	1225
14	2933	19	3507
14	3725	19	3951
14	4645	19	4411
14	4701	31	79627
14	17796	31	154822
14	97395	29	223803
14	164018	29	290426

f_0	f_1	n	N
15	31	9	37
15	180	13	210
15	38	16	216
15	272	13	256
15	135	17	480
15	233	16	489
15	242	16	498
15	101	19	679
15	593	16	771
15	140	19	790
15	772	17	1117
15	2741	19	3391
15	2924	19	3502
15	56196	29	170007
15	230411	29	344222
15	4165	39	513815

Параметры обобщенных рядов Фибоначчи, содержащих степени натуральных чисел f_0, f_1 — начальные условия, n — порядковый номер числа в последовательности, N – число, m-я степень которого равна f_n

m=3				
f_0	f_1	n	N	
0	1	2	1	
0	1	6	2	
0	8	6	4	
0	12	12	12	
0	96	12	24	
1	9	7	5	
1	16	7	6	
1	71	14	30	
1	98	16	46	
1	14254830	36	59705	
2	5	10	7	
2	10	11	10	
2	153	13	33	
2 2 2 2 3 5 5 6 7	41107	29	2765	
3	7	4	3	
5	517	17	94	
5	764	17	107	
6	31	8	9	
7	1035	18	139	
7	203913	32	7630	
8	35	10	13	
8	69	12	22	
8	784	16	92	
8	2067	24	458	
8	10319	30	2048	
8	142087	30	4908	
10	1434	17	132	
12	32	7	8	
15	38	16	36	
15	37591	29	2684	

m=4				
f_0	f_1	n	N	
0	1	2	1	
0	2	6	2	
0	9	12	6	
0	144	12	12	
2	5	7	3	
5	183387	30	625	
6	16	7	4	
9	40	12	9	
14	35	10	7	
14	931	17	35	
15	272	13	16	

m=5				
f_0	f_1	n	N	
0	1	2	1	
0	4	2 6	2	
0	54	12	6	
1	18	10	4	
6	15	7	3	
7	58	18	11	

<i>m</i> = 6				
f_0	f_1	n	N	
0	1	2	1	
0	8	6	2	
6	31	8	3	
15	38	16	6	

m = 7				
f_0	f_1	n	N	
0	1	2	1	
3	8	7	2	