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OTa cTaThs SBWJIACh PE3YJIbTATOM MOETO COTPYAHHYECTBA C MPAHCKUM HCcieqoBaTeneM  S.
Mostapha Kalami Heris, koTtoporo 3amHTepecoBaJi HEKOTOPbIE MOHM CTaTbd, KacarolIHecs
kpunrorpaduu [4-7]. CyTh uaei, H3I0KEHHBIX B padoTax [4-7], cocTosia B TOM, 4TOOBI UCIIOIB30BATh
CIICUANIbHBIA KJIACC MAaTpUI], Ha3bIBaeMbIX MaTpuiaMu PHOOHAYYM U <BOJOTHIMH» MATPULAMH, IS
KOJMPOBaHUS WH(OpPMAIMH, C LENBI0 €€ 3allUThl OT HCKWKCHUH (KOPPEKTHPYIOIIHE KOABI) M OT
HECaHKIIMOHUPOBAHHOTO Joctyna (kpumnrorpadwus). [Ipu 3TOM HCIONB30BaNCS <«MaTPUYHBIA METOMI»
KOJIMPOBAHUS M JEKOJUPOBaHMA. B 3TOM MeTone mcxomHast nHGOPMAIHs MMOJICTaBIsUIACh B MaTPHYHOMN
¢dopme, To ecTh B BHJIE KBAIPAaTHONH MAaTPHIIBI ONPEACICHHOTO pa3Mepa. 3aTeM Ta MaTpHUIla YMHOXKaIach
Ha Kooupyrowyro mampuyy (Matpuiry @uOOHAYIH WM <BOJIOTYIO» MATPHILY) TOTO JKe pa3Mepa, IpU 3TOM
HOJIYy4allach KOO08As Mampuyd, SJIEMEHTHl KOTOPON HANpaBISLIMCh B KaHan CBs3U. JlekoampoBaHue
COCTOSUIO B YMHOKEHHUHU KOJJOBOW MaTPHIIBI, OIYYCHHOW 13 KaHalla CBSA3H, HA 0eKOOUPYIOWYI0 MAmMpuyy,
KoTOpasi ObLTa MHBEPCHOU K kodupyroweti mampuye. B xuure [4] u cratbe [5] ObUIO MOKa3aHO, YTO C
HCTIONIb30BAHUEM HEKOTOPBIX YHUKAIBHBIX MaTeMaTHYECKHX CBOWCTB Marpun PuboHayum Ha 3TOMH
OCHOBE MOTYT OBITh CO3/1aHBl KOPPEKTHUPYIOIIME KOJbI, KOTOpbIE 00JagaoT (haHTacTUYECKOH
KOPPEKTHPYIOIICH CITOCOOHOCTHIO IO CPABHEHHUIO C M3BECTHRIMU anreopandyeckumu kogamu (B 1 000 000
pa3 Iydie, 4eM KJIAcCHYeCKHe KOppEeKTHpylomue Kojasl). Kpome Toro, B mpeasaracMoM MeETOHE
KOJIMPOBAaHUSI OOBEKTaMH KOPPEKLMUH SIBISIOTCS HE OMTHI M WX COYETaHMs, a 3JIEMEHTHI KOJIOBOM
MaTpHIBl, KOTOPblE MOTYT OBITh YHCIAMH OTPOMHON BEIWYHMHBEL. SICHO, YTO Takasi Teopus
KOPPEKTHPYWIIHUX KOI0B MPEICTABJSET OO0JbIIOH HHTEpPeC IJsi CO3IaHUS CyNEePHATEKHBIX
HHGOPMALMOHHBIX CHCTEM.

B cratesx [6, 7] aTa e uaes UCMONB30BalIach ISl KpUNTOrpadUuecKor 3aIluThl HHPOPMAIUH.
[Ipy 3TOM HCIIONB30BANHCH TaK HA3bIBAEMBIEC <GOJIOTHIE» MATPUIIBI, HJIEMEHTAMH KOTOPBIX SIBISIOTCS
runepoonmmyeckue ¢pynkuun Gudonayuu, BBeneHHbie B padote: Stakhov A., Rozin BOn a new class of
hyperbolic functionChaos, Solitons & Fractals, 2005, Volume 23, és3u379-389.

Mostapha Kalami Heris B cBoem nmucbme K0 MHE 00paThiI MOE€ BHUMAHKE Ha TO, YTO B KAYECTBE
KOJIMPYIOUIeH 1 AEKOANPYIOMEH MaTPHUIl MOTYT HCIIOJNB30BAaThCS HE TOJIBKO MaTpHuibl PuboHAYYM HIiIH
«30JIOTHIE» MAaTpHIbl, HO W Oojee IIUPOKHHA KJIacC MAaTPHIIbl, W3BECTHBIX B TEOPHU MATPHUI[ Kak
Heocobennvie mampuyst (NON-singular matrices I'maBHOM «0COOEHHOCTHIO» HEOCOOEHHBIX MATPHIL
SIBJISIETCSL TO, YTO MX JETEPMUHAHT OTIMYACTCS OT HYJIsS. MeHs 3auHTepecoBaia dTa Uiaes, © Mbl Hauyallu
UCCIe0BaTh TaKkoW MeTox Kpunrorpadpuu. MHE NPUIIIOCH TIyOXe BHHUKHYTH B TaKylo 0O0JacTb
uHpopMaTuku Kak xpunmoecpagus [1-3]. B pesynaprate msydeHus iuteparypbl mo 3tod Teme [1-3]
yJaJI0Ch YCTaHOBHTH CIIETYIOIIEE:

1. Haubonee mnpeArOYTHTENILHON B COBPEMEHHBIX KPHUITOrpagHUYecKUX CHCTEMaX CUYUTACTCs
«Kpunmocucmemvl € OMKPLIMbIM  KIIOYOM»,  Ha3bIBaGMble  TaKXKE  «ACUMMEMPUYHbIMU
Kpunmocucmemamu». B «aCHMMETPUYHBIX KPHIITOCUCTEMAX» HCIOJB3YeTCs JBa «KPHUIITOrpapHUCCKUX
KITFOUa»:

- OMKpPLIMbIU K104, KOTOPBIN BBICTABIISAETCS ISl BCeoOIero 0003peHus;

- CeKpemHulil K104, U3BECTHBIM TOJIBKO IOJTyYaTEeNI0 COOOIICHHS.



Ha mepenaroreil cTopoHe ¢ TOMOIIBIO OTKPBITOTO KIIFOYa» (POPMHUPYETCsl KOJIOBOE COOOIIEHNE,
KOTOpOE HAamMpaBJsieTCs] B «KaHaJ CBA3U». be3 3HaHUS «CEKPEeTHOro Kioua» pacmuppoBaTh KOJOBOE
cooOimeHrne HeBO3MOXkHO. OJHAKO, MOJydYaTeNlb, 3HAIOMUN «CEKPETHBIM KII0Y», paciu(pOBHIBACT
3aKOJIMPOBAHHOE COOOIICHHE.

OCHOBHBIM JIOCTOMHCTBOM <QCHMMETPUYHBIX KpUOTOCHCTeM» [1], 4TO CTajno npUYMHON HX
HIMPOKOTO pAcHpOCTpaHEHUsT B KpunTorpadpuyeckoil MpakTHKe, sBisgeTcs TOT (akT, 4YTO HET
HEOOXOIUMOCTHU MIEPECHUIATh «CEKPETHBIN KIIFOU>» OT MOTyJaTelsi K OTIPABUTEITIO COOOIICHUS.

2. B 1O e BpeMs «aCHMMMETPHUUYHbIE KPUITOCUCTEMBI» UMEIOT CYIIECTBEHHBIN HEAOCTAaTOK» I10
CPaBHEHHIO C «CUMMETPUYHBIMH KPUIITOCUCTEMAaMHU», Ha KOTOPBIN oOpalacTcss BHUMaHue B paboTax [2,
3]. Jlemo B TOM, YTO «aCHMMETPHUYHBIC KPHUIITOCHCTEMBI» 3HAYUTEIHHO MEIJICHHEE MO CPaBHEHHIO C
«CHUMMETPUYHBIMH  KPUIITOCHCTEMaMU», YTO  3aTPYIHSET  HCIONb30BAaHUE  <«ACHMMETPUYHBIX
KPUIITOCUCTEM» B HWH(OPMAIMOHHBIX CHCTEMax, palbOTalomUX B pEabHOM MacmTade BpeMEHU
(mpuMepom Takux HMH)OPMAIMOHHBIX CUCTEM SBJISCTCA yugposas menegonus). B pabore [3]
OTMEYAETCS, YTO «CYUECMBEHHBIM HEOOCMAMKOM <ACUMMEMPUUHBIX AN20PUMMOB» AGNISLeMC MO, YMOo
onu 2opazoo meonennee (6 1000u 6onee pas) 6 cpasnenuu ¢ KCUMMEMPULHLIMU ATCOPUMMAMU .

Kpunrorpadguueckas mnpakThka Halula W3SIMIHBIA BBIXOA JUISl TPEOJOJIEHHUS YKa3aHHOTO
HEJ0CTaTKa «@CUMMETPUYHBIX KPUNTOCUCTEM». bBIIO BBIIBHHYTa KOHLEMIHUS < THOPUIHBIX
kpunrocuctem» [2, 3]. Konnenmus eubpuonoii kpunmocucmemoi [2, 3] ABasieTcss HOBBIM HAIPaBJICHUEM B
kpuntorpadgum, KoTopas OOBEOUHSET TPEUMYIIECTBA  <«ACUMMETPUYHBIX  KPUITOCHUCTEM»  C
3O PEKTUBHOCTPIO «CHUMMETPHYHBIX KPUNTOCUCTEM». [ ubpudnas «xpunmocucmema MOXKET OBITh
CKOHCTPYHpPOBaHA Ha OCHOBE JIBYX Pa3AeNbHBIX KPUITOCUCTEM:

- «QCUMMETpPUYHAas KPUIITOCHCTEMa», KOTopas HCHOJb3yeTcs Ui Nepelayd KPUNTOrpaguyecKux
KJII0Yei,
- «CHMMETPHUYHAs KPUIITOCUCTEMA», KOTOpask UCIOIb3YeTCs ISl mepeiaun JaHHBIX.

[Ipennonoxum, uyro bod n Anmca pemmnu oOMeHsAThCs cooOmenusmu. [Ipenmnonaraercs, 4to y
bo6a u AnUCHl UMEIOTCS <«OTKPBITbIE KpUNTOTpapuyecKhe KIIOYU», HCMHOJb3ysl KOTOpble OHH MOTYT
nepeaBaTh HEKOTOPBIE COOOIIEHUS B «MEIICHHOM PEKUME.

[Ipeanonoxum, uro bob xenaeT nepenate Anuce cooOIIEHUE M C UCTIOIb30BaHUEM «THOPHIHON
KPUTNITOCUCTEMBI». [[JIsl 3TOTO OH AeNaeT cleayromiee:

* Tenepupyer ciydaiiHIM 00pa30M «CHMMETPHUYHBINA KPUIITOrpaduIeCcKuil KIr0u» (CKakKeM, S).

* Iudpyer coobueHrne M ¢ UCIOIB30BAHUEM «CHMMETPUIHON KPUITOCUCTEMBI», UCTIONB3YS
KITIOY S.

e Iudpyer k1109 S, HCTIOTB3YS «ATyOTUIHBIA KPUITOTPAPUICCKUN KITFOU» AJTUCHI.

*  Orchbutaer 00a muppoOBaHHBIX COOOIEHUS AJHCE.

AJrca UCTIONB3YeT CBOM «CEKpETHBIN KpUNTOrpahuuecKuid KIrou» Ui Aemupanuy Kiodya S, 1
3aT€M HMCTOJIB3YyeT KoY S JIJIs AeU(paiy COOOIeHHs M.

SICHO, YTO KOHUENUHUS eUOPUOHOU KPUNMOCUCMEMb] TTIO3BOIISICT 00BbEMHUTE BCE TPEUMYIIECTBA
«aCHMMETPHUYHBIX» U «CHUMMETPHUYHBIX» KPUOTOCUCTEM. TakoW MOAXOJ MOBBIIIAET MHTEPEC K HOBBIM
KpUNTOrpaQuuecKuM anropuT™Mam, B YaCTHOCTH, K MAMPUYHOU KPUNMopaghuu.

Bropoii Bompoc, KoTophiii MbI pemanu BMecte ¢ Mostapha Kalami Heris, ato nouck o6imactu
3¢ (HEKTUBHOTO HUCHOIB30BAHUS MAMpUyHOU Kpunmozpaguu. Mpl TPUIUIA K BBIBOJY, YTO Haumboiee
3 PeKTUBHON 00JIACThIO SBISETCA Tepeaada yudposvix cucHaniog, TPUMEPOM KOTOPBIX SIBIISETCS
nudpoBas TenedoHUs, ayaquo M BUIACOCHUTHAIBI U T.O. B Takux cucTeMax HOMyCKAaeTCs HEKOTOpas
MOTPENIHOCTh MpH Aemndpanun coobiieHnid. B kauecTBe mpruMepa MOMXHO NMPUBECTH HCIOIb30BAHHE
aHaJIOrO-IU(PPOBBIX M UHPpo-aHanoroBeix mnpeodpasosarenerd (ALl u I[AII), xoTOpble HIMPOKO
WCIIONIB3YIOTCSL B ITU(GPOBON TenepoHHMH, ayauo W BUIAEO cucTemax. SlcHo, uro morpemHocth ALl u
IJAII BusieT Ha Ka4eCTBO BOCIIPOU3BEACHMSI TeNe()OHHOTO CUTHAIIA WJIH ayAduo U BuaeocurHaita. Ho mpu
noctatoyHo Bbicokor TouHOocTH ALIIT u LIAIT yenoBedeckuii Ciyx uiu 3peHUE HE B COCTOSSHUM OTJIMYHUTh
OTKJIOHEHHE CHUTHAJla OT UCTHUHHOTO curHana. [lomoOHOe ke TPOUCXOOUT TMPH HCIOTH30BAHUH
MaTpuyHoi Kpuntorpadpuu. Ilpu mmdpanum u gemudpanuu MOTyT MPOUCXOJUTH HEKOTOpHIE
OTKJIOHEHHS Jemr(POBAHHOTO CHUTHAJIA OT MCXOAHOTO, HO, OJaromapsi 0OCOOCHHOCTSM YeJIOBEYECKOTO
BOCTIPUATHSA, ITO HE OKa3bIBAET CYHIECTBEHHOTO BIUSHUS HA KAUECTBO Mepeaadn yughposozo cucHaid.



Wrak, riaBHas 3amada HACTOSLICH CTaTbu — JaTh OOOCHOBaHHME HOBOTO KPUNTOTPadUUECKOro
METO/a, Ha3BaHHOTO MAmMpuuHol Kpunmozpaguetl, KOTOPBIH MOXET OBITh HCIIONB30BaH B pPaMKax
«TUOPUTHON KPUMTOCUCTEMBI» JJIsI «OBICTPOU» Iepenadn MU(POBBIX CUTHAIIOB B peaJbHOM MaciuTade
BpPEMCHHU.

Crarbsi COCTOMT U3 4YeThIpeX 4acTel. Bo BBeneHun maercs ompeneneHue yugpogozo cuenaila n
paccMaTpHUBalOTCs TIPUMEPBI KBaApaTHBIX MaTpull (MaTpul] ®UOOHAYYN U «BOJIOTHIX» MATPHIL), KOTOPbIC
OBUTH UCIIOJIB30BaHbI B MOUX TIEPBBIX padoTax [4-7] mis KoMUpOBaHUS U IEKOJUPOBAHHUS.

B maparpade 2 «Non-singular matrices» HeocoGeHHbIe MATPHIbI) H3JIAracTcs OCHOBBI
TEOPUU HEOCOOCHHBIX MATpHI], KOTOPBIC HCHONB3YIOTCS IS KOAMPOBAHHS W JCKOJUPOBAHHS TPHU
MaTpu4HOU Kpunrtorpadun. KBagparnas matpuiia 4 Ha3pIBaeTCs HEOCOOCHHOM, €CIIh €€ NETePMUHAHT
OTJIMYACTCS O HYJIS, TO €CTh,

detA # 0.
Kaxcast HeoCOOEHHAs MATPHUIIA UMEET uneepcHyto mampuyy A, KoTopast cBsi3aHa ¢ MCXOIHOM MaTPHICH
CJICAYIOIIMM COOTHOIICHUEM:

AAT =1,
rae |, - ennauyHasg mMarpuna pasmepa n.
CymiecTByeT cieayroiiee CBOWCTBO HEOCOOSHHBIX MATPHIL;
det( Ap) = (detA)”
[Tpocreiinras HeocoOCHHAs KBaJApaTHAs (2 x 2) — MaTpuIla UMECT BHI:

Aol
8 8y

Ee nerepMHHAHT BBIYUCISIETCS 11O (GOpPMYIIE:

detA = 818, ~ 8,8, G

Ee maBepcHas MaTpuiia BEIYUCIACTCS 110 opmyIie:

-1
&, &, - 1 &, ~&,
& 8y detA &, a;

Jlamee w3MararoTCsi OCHOBHI TEOPHUH HEOCOOCHHBIX (n X n) —marpurr (N>2) u cnocoOsl

A=

HaXOXXIACHUA MHBCPCHBIX MaTpHUII.

B maparpage Matrix Approach to Cryptography ( MaTtpuuHblii moaxoa K Kpunrtorpadun)
u3naraercs oOMMHA MPUHLUI MampuuHou Kpunmoepaguu. PaccMoTpuM HeocoOeHHyI0 mMatpuny E u ee
MHBEPCHYIO MaTpHIly E™ Matpunia E SBISIOTCS Kooupylowet mampuyell W OTHOBPEMEHHO
Kpunmozpaguueckum Kuouom, Matpuna E' MOXeT ObITh BBIUHCICHA H3BECTHBIM CIIOCOGOM C
ucnoip3oBanueM matpuibl E. [lycte X — ucxonHoe coollleHue, MpeAcTaBIeHHOe B BUJIE KBaJpaTHOM
MaTpHUIBl TOTO K€ pasMmepa, 4To M Kooupyrowas mampuya E. Torma wugpayus cocrour B
nepeMHokeHuu MaTpuil £ u X. B pe3ynbrare o0pasyercs 3awugposantoe coodbwernue Y.

Y =Ex X
Jleundparust COCTOMT B yMHOXKCHHH 3dUiihposanio2o coobuenus Y Ha MHBEPCHYIO MaTpuity E
E™xY = E'x(Ex X)=( E'x Px X= Kk X= X

Jlanee npuBOAATCS HpUMEphl WHdpauud U Aemudpanuu aias  3BYKOBOTO CHUTHajga W JUIS
HEKOTOPOT0 BHE0-00pasa.

B 3akawyennu eme — pa3 aHAIM3UPYIOTCS TPEUMYINECTBA MAmpuuHou Kpunmozpaghuu,
OCHOBAHHOHM Ha KOHLENIMH «HOPUIHOW KPUOTOCHUCTEMBI». MarpuuHas Kpunrorpadus ocHOBaHA Ha
MaTpUYHOM YMHOXXEHHH M oOecrmeunBaeT ObICTpoe TpeoOpa3oBaHWe IM(POBOTO CHUTHAIa B
3amu(poBaHHOE COOOIIEHNE, YTO TMO3BOJSET HCIOJB30BaTh €€ JUIsi KPUITOrpapuuecKod 3aliuThl
U(POBBIX CUTHAJIOB, MOCTYMAIOUIUX B pealbHOM Maciitade BpeMeHU. «Kpunrorpaduyeckuil Kiou»
(komupyromas MaTpuIla) MOXKET U3MEHATHCS CIy4allHBIM 00pa3oM JOCTaTOYHO YacTo, YTO 00ECIeUnBacT
XOpOIYIO CTETEHb KPUNITOrpapuuecKor 3aluThl. SICHO, YTO B JaHHOM CTaThe U3JIaraeTcsi TOJIbKO UAEs



MeToaa. I[J'IH cro HpaKTI/I‘IeCKOI‘O HNCITIOJIb30BAHUA H€O6XO,Z[I/IMO HpOBeCTI/I JOITOJIHUTCIBbHBIC
HCCIIEI0BAHUS.

[TepBbIM peabHBIM MPOESKTOM MOKET CTaTh CO3JAaHKE YUIIOB HA OCHOBE MPEAIaracMoro Meroja,
KOTOPBIC MOTYT OBITh BCTPOCHBI B MOOUIbHBLI Meehon s KpUnTorpadhuIecKoi 3ammThl TeIe(OHHBIX
COOOIIIEHHUH.

Abstract

In this study we develop a new method of cryptphyabased on matrix approach. Digital signals
(including digital sound signals and digital imageghich are used widely in modern media produats,
real area of application of the matrix cryptographiis method refers to symmetric-key cryptography.
As cryptographic key, the method uses special kena¢rix, which is non-singular matrix, and somalre
numberp, which is used as a power of the kernel matrixodder to transmit cryptographic key from
Sender to Receiver, we can use public-key cryptesysMatrix cryptography can be used effectively fo
protection of digital music and digital movies frdarbidden access.

1. Introduction

In this study we are talking about cryptographiatection ofdigital signals. The term ofdigital
signal used in the present article refers to discrete-tgignals that have a discrete number of levels.
Digital signals are digital representations of discrete-time dgynahich are often derived from analog
signals. In the Digital Revolution, the usage djit@il signals has increased significantly. Many erod
media devices, especially the ones that connehtaoitnputers use digital signals to represent ssgnait
were traditionally represented as continuous-tilgaas; measurement systems, cell phones, music and
video players, personal video recorders, and digitmeras are examples.

Let us represent a digital signéin the form of sequence of samplesi=1,23,.}, that is,

X :{X1’X21Xs’X41X11Xz’X31X4’---1Xn+11xn+21xn+31xn+4’---} 1)

It is clear that for many cases there is a probdémreryptographic protection of digital signal (1).
First of all, it is important to protect cell phaé&om forbidden hearing. Other example is to mbte
music or video information from forbidden accesksAit is very important to protect many measureimen
systems from forbidden access and so on. Possibtyy problems exist for video recorders, and digita
cameras.

As is well-known, a majority of continuous-timegsals are signals representing information in
real scale of time. Of course, cryptographic alfpons used for cryptographic protection of digitghsls
should be enough fast-acting algorithms.

Let us consider from this point of view public-kalgorithms [1] used very widely in modern
cryptographic praxis. Many famous specialists a@uating the advantages of public-key cryptography
very critically and are paying attention to shonogs of public-key cryptographyrichard A. Molin
writes in [2]: “Public-key methods are extremelpwlcompared with symmetric-key methods. In latter
discussions we will see how both the public-key apohmetry-key cryptosystems come to be used, in
concert, to provide the best of worlds combining #fficiency of the symmetric-key ciphers with the
increased security of public-key ciphers, calledhrid/ systems.”As is noted in [3], “one drawback of
asymmetric key algorithms is that they are muchvesto(factors of 1000+ are typical) than ‘comparably
secure symmetric key algorithms. In many qualityptosystems, both algorithm types are used. The
receiver's public key encrypts a symmetric algonitkey which is used to encrypt the main message. Th
combines the virtues of both algorithm types whespprly done. Such cryptographic systems are called
hybrid cryptosystems.”

A concept ofhybrid cryptosystemis a new direction in cryptography [2, 3], whicbhntbines
convenience of a public-key cryptosystem with tficiency of symmetric-key cryptosystems. A hybrid
cryptosystem can be constructed using two separgbéosystems:

. a public-key cryptosystem for thinsmission of cryptographic keys and



. a symmetric-key cryptosystem fdata transmission
The hybrid cryptosystem is itself a public-key gyst who’s public and private keys are the samenas i
the scheme for the transmission of cryptographys ke

To encrypt a messageaddressed to Alice in a hybrid scheme, Bob doesdifowing:

* Generates a random (private) key for the datagsulation scheme (s&y,

* Encrypts the messageunder the data encapsulation scheme, using the jksy generated.

* Encrypts the kegunder the key encapsulation scheme, using AlprdXic key.

* Sends both of these encryptions to Alice.
Alice can use her private key to decrgpand then usseto decrypt the message

It is clear that a concept of “hybrid cryptosysteailows to unite effectively all advantages of
public-key and symmetric-key cryptosystems. Sugbr@gch raises interest in the development of hybrid
cryptography based on new cryptographic algorithms.

Recently in the works byAlexey Stakhov [4-7] a matrix approach to coding theory and
cryptography based on the Fibonacci and “goldenttices was developed.

Let us consider examples of the Fibonacci matriEes.the first time, a concept of the Fibonacci

Q-matrix
11
= 2
Q=[; o @
was developed iRloggatt's book [8]. It is a generating matrix for the s$&cal Fibonacci numbeFs,
Fn=Fnat Fn2; Fo=0,F1=1. (3)
The Q-matrix (2) possesses the following mathematicapertes:
F.. F
n - n+! n 4
o= @
dethan_l Fn+]_' Fn2 =('1)n. (5)

Every “direct” matrix (4) has its own inverse matthat takes two different forms in dependence
on parity ofn. For the evem=2k the inverse matriQ™" has the following form:

F -F
Q—zk :( 2k-1 2kj : (6)
By By
for the oddn=2k+1 the inverse matriQ™" has the form:
-F F
Q—Zk—l :( 2k-2 2k+1j ) 7)
Foer  —Fx

Alexey Stakhovdeveloped in [9] a theory of Fibonad@p-matrices, which are a generalization
of theQ-matrix (2). For a givep=0, 1, 2, 3, ... th€y-matrix is a p+1)x(p+1)-matrix of the kind

1 00 - O Oy
0 010 00
0 001 .- 0 Oy
Q=3 = 1 i i (8)

0 000 --- 1 O
0 00O - 01

1 00 O - O Of

The FibonaccQy-matrix (8) is a generating matrix for the FibongaeiumbersF,(n) introduced
by Alexey Stakhovin [10]:

Fp(n)= Fp(n)+ Fp(n-p-1); Fp(0)=0,Fp(1)=Fy(2)= ... =Fp(p)=1. )

The recurrence relation (9) is reduced to the rreage relation (3) for the classical Fibonacci
numbersf=1). Also the Fibonac@-numbers (9) follow directly from Pascal triangl®[1



If we raise theQ,-matrix (8) ton-th power, we get [9]:

X F(n+1) F.(n) < F(n- p+2 F/(n- p+l
F(n- p+1) F/(n- p) - F(n-2p+2) F(n-2p+1)
Qr= : : : : : : (10)
F(n- 1 F(n-2 - F.(n- p) F.(n- p- 1
F,(n) F(n-1) - F(n- p+) F.(n- p)

It is proved in [9] that the determinant of thetma(9) is equal to
det Qp =(-1)". (11)

An essence of this approach consists of the folgwi he initial messagké (the data message) is
represented in the form of square matrix of the 9z p, wherep is some integer, which takes its

values from the se{t2,3,4,...} . The matrixX is multiplied by special encoding matiiof the same size to

get the code matriX. The matrixE has inverse matri€”. A decoding consists in multiplication of the
code matrixY by the inverse decoding matri’. If we use the so-called Fibonacci matrices (4) @ir0)
and inverse to them matrices of the kind (6) andié/encoding and decoding matrices, we can daeict
correct effectively errors arising in the code mxatr [4, 5]. Also in the works [6, 7] the so-called
“golden” cryptography based on the “golden” matsieeas developed.

The main purpose of the present article is to gdizer a matrix approach to cryptography and
develop the so-calledhatrix cryptographybased on special kind of square matriceaon-singular
matrices. This kind of cryptography can be useful for dibisggnals used widely in media products
operating in real scale of time, namely, sound agndigital movies, cell telephone, audio and wgide
players and so on.

2. Non-singular matrices

2.1. A definition and general properties of non-singulanatrices.The Fibonacci matrices given

by (2), (4), (6), (7), (8) and (10) have unique mneambatical properties (5) and (11), that is, their
determinants are equal only to (+1) or (-1). Alets tmeans that these matrices are examples of more
general class of square matrices cahed-singular matrices. It is known that a square matrix is
callednon-singular if its determinant is not equal to zero [11],ttlsa

detA # Q. (12)

In linear algebra the non-singular matrices aredahvertible because every non-singular mattix
hasinverse matrixA™, which is connected with the matrixwith the following correlation:

AAT =1, (13)
where |, is identity fixn)-matrix.
2.2. Non-singular (2x2)-matricesFibonacci Q -matrix (2) is a very special case of the non-
singular (2x2)-matrices. The results for Fibond@cimatrix can be generalized to be used with all §2x2
matrices. Let us consider a square non-singula2)gnatrix

A = (all ale ' (14)

1 8y
wherea,,, a.,,a,,, 8,, are some real numbers. It is clear that the detemtiof the matriXA is equal:
detA =a,a,— a,a,% C. (15)

Inversion of this matrix can be done easily asofof [11]:

A—lz(ail a12J_1: 1 (azz _a12j (16)
3y Ay detA & A,



As is well known, determinant of a square matrixiag to the product of itsigenvalueq11].
Remind that theeigenvaluesof the matrix (14) can be obtained as follows. ustconsider a square
(2x2)-matrix constructed from the matrix (14):

A_M:(an a12j_)\(1 0]:(311_)‘ a, j, (17)
&y Ay 01 &, azz_)‘

wherel is an identity (2x2)-matrix andl is continuous variable.
Determinant of the matrix (17) is callebaracteristic polynomiabf the matrixA:

det(A-A1)=(a; ~A) (2, =A) = a2, =N = (&t @) +( aar aa). (18)
Notice that the characteristic polynomial (18) t&nwritten in terms of the traote(A) =a,+a,, and the
determinantdet(A) = a,a,,— &,a,. of the matrixA as follows:

det(A-Al)=A? - tr(A)A + de(A) (19)
It follows from the polynomials (18) and (19kharacteristic equationf the matrixA
A?=(a, +a,,) A +(aya,,~ a,8,) =A% -t Ad+det( A=0 (20)
Two roots of the equation (20)

+ +a,,)” 1
e e L CI—

is calledeigenvalue®f the matrixA.
Assume that a square (2x2)-matAx (14) has two distinct eigenvaluds and A, . Using Lagrange

Interpolation formula or Spectral Resolution®f, real powerp of A can be calculated as follows:
SATAL e AT Ge L T(A-a1)a2 (A= A0) 2] 22)

/]1_/12 /]2_/]1 /11_/]2

This implies that elements of any real power o2:@2)-matrix with distinct eigenvalues, is a linear
combination of the same power of its eigenvaludse Toefficients in these linear combinations are
constant and independent on real numiper This is a generalized form dfagrange Interpolating
Polynomials Also it is referred aSpectral Analysi§| or Spectral Resolutionf square matrices.

For example, the eigenvalues of Fibon&@cimatrix (2) are

Ap

/]1:1':1-'-—\/g andAZ:—l:l_—\/_S' (23)

2 r 2
wherer is the well-known golden mean. Obviously followieguality can be written:
detQ =44, =-1 (24)

According to (22), real powep of the FibonaccQQ -matrix can be calculated by

:(Q +?l | jrp -(Q-7l )(—%ﬂ
[ Y

e 1))

It is known that ther-th Fibonacci number can be expresseBiast formula[8]:

ST

So (25) can be written in the form of




— FP+1 FP
Q"—(F . J (27)

p p-1
2.3. General Square Matrice&q. (22) can be generalized to all square matotesbitrary size,
with distinct eigenvalues. LedA to be a (nx m) square matrix with distinct eigenvaluds A,,...,4, .

Real powerp of matrix A, can be calculated by

A" = a (A)A° (28)
i=1
The matrix functiong, , :0 ™™ - [0 ™" is defined by
(x )0 [ A (29)
O A=A

1=
j#

where [ ™™ denotes the set ahx mcomplex matrices an& 00 ™™. This is a more general case of
Lagrange Interpolating Polynomials and Spectral Iygia of square matrices. Setting =2 in (28)

yields (22). These equations can be used to caédécalay real power of any square matrix with digtinc
eigenvalues. Also these equations can be genatalaeuse with square matrices with repeated

eigenvalues. In the repeated eigenvalues cagg, is not independent on powey and varies for
different values of power.

2.4.Jordan Matrix Decomposition Another way to calculate the real power of squaatrices is
based odordan Matrix Decompositiordordan decomposition of matri is written as

A=TJT™ (30)
whereJ is in Jordan canonical formi, is square matrix, whose columns are eigenvectogeioeralized
eigenvectors ofA , andT ™ denotes the inverse of matfix. In a more specific case, &,1,,...,A_ are
distinct eigenvalues oA , then Jordan canonical form éf is defined by

A 0 O O
J 0 0 4 _O 0 (31)
o 0 . O
0 0 0 A,
To calculate real powep of A, the following formula can be used:
AP =TJPT™ (32)

This equation required® to be calculated. MatriX] is diagonal, so calculation of its powers is very
simple. Its real powep can be calculated as

A 0 0 O
O A 0 O
JP= 2 (33)
O 0O . O
o o o A
and then as
A0 0 O
O A» 0 O
AP =T 2 T (34)
O 0O -. 0
o o0 o0 A

Egs. (20) and (34) can be used to calculate aalypewer of any square matrix with distinct
eigenvalues. Also there exist general versionsheke¢ equations, for repeated eigenvalue cases. For
cryptographic applications, matrices with distieaenvalues are sufficient. So the repeated eidgeava
cases were not discussed in this section.



2.5. Non-singularity of powers.According to the previous sub-sections, determirana real
power of a matrix can be computed using the folimudentity:

det(AP) = de(A)’ (35)
So if A is non-singular, any real power of this matrixnen-singular, too. In other word, non-
singularity of matrixA or equivalently

det(A)# G (36)
implies that
det(A)" = de(AP) = (37)
So clearly AP is not singular, too. This lemma is a basic asgionpn the theory of Matrix
Cryptography.

3. Matrix Approach to Cryptography
3.1. A general principle of a matrix approach.et us consider a non-singular matéxand its

inverse matrixE™, which are connected by the identity (13). Nowustconsider a square matkxwith
the same size as the matExThenwe can write a product of the matridesndX as follows:

Y =Ex X (38)
If we multiply a matrixY by an inverse matri€™, we get:
E™xY = E'x(Ex X)=( E'x Bx X= Kk X= X (39)

The identities (28) and (39) give somgeneral principle,which can be used in coding theory and

cryptography.For the first time, this principle was formulatedthe book [4].
Consider sequenc{exi}iN:1 which represents one-dimensional digital signéle Elements of this

sequence can be rearranged in the foromafm matrices. The result is a sequence of squarecsatri

Xl cee Xm Xm2+1 cee Xm2+m
: ' : : S (40)
m?-me Xz ) \Xomte ma X2
Element of this new sequence are defined by:
Xkpmeer 7 Xenyne m
X, = : : (41)
kaz—m+l X knf

The sequence of square matrieée(sk}::1 contains the same data as seque{m;éiN:l. To encrypt
N

the sequencéx, }._

it can be reformed to build a sequence of squagices. Suppose thélEk}::l is
a sequence of non-singular square matrices ofaime size ofX , . Multiplication of E, and X, yields:
Y. =E X, (42)

K
k=1

and thus the sequence {Mk} Is defined. Inverting the operations done in EB39)(to create matrix

K
k=1’

sequence X , }

the matrix sequencfy,}_ is transformed into scalar sequer{og}’ . This new

sequence is an encrypted form of original sequénp}alN:l. The cryptographic key, which is used here, is

the sequence of non-singular matric{ﬁK}:le. Some methods for defining this Encoder Seque&fce

non-singular matrices are discussed in the follgwisub-sections.

3.2. Matrix Cryptography for Digital Sound SignalsOne possible way to define non-singular
matrices in the encoder sequence is to define theddces as real powers of a non-singular matrix,
namelyKernel matrix. Assume thaB is a non-singular matrix. According to sub-sectiB, all real



powers of matrixB are also non-singular. So real powers of this imatin be used to create a sequence
of non-singular matrices, and this is all needediéfine an encoder sequence. Assume that encoder

sequence is in the form ({)Ek}:ﬂ. Supposg pk}::l to be a sequence of real numbers. Then elements of

the encoder sequence can be defined by:
E, =B™, (43)
which is the definition of encoder sequence aspewlers of a non-singular kernel matix.

Digital sound signal is an example of one-dimensiotiata signals. Note that if the signal is
recorded in multi-channel mode, any channel of #uand is one-dimensional. In this sub-section, a
single channel of sound is argued and the cryppdgcaalgorithm is applied to a single channel. Bili
sound signals are saved and stored in many forimatsee computers. Here the algorithm is applied to
sounds with Microsoft RIFF Wave formad [ It is the main format used in Microsoft Windowgstems,
to store raw and usually uncompressed digital spulmdthis format, data existing in a physical sbis
sampled at a constant frequency, called Sample Ratelitude of samples is saved in the file as data
and later the sound will be played back by audiavare. When all amplitudes of sound are multiplied
or divided by a constant, the volume of sound édhly thing which is changed. While the relatiadue
of amplitudes remains unchanged, the sound is s8mee the value of amplitudes have to lie in the

range of[—l,]], all sounds in the algorithm are normalized toehkrgest absolute value of amplitudes,

equal to 1.
Supposex [n] is a digital signal, and represents a digital swrhich is sampled at 22 kHz and

Mono. The plot of this sound is shown in Fig. 1isTeignal can be represented is the sequence form a

{Xi}iN:l'

T T
— Source Sound

0.8

0.4 N

0.2

Amplitude

-0.2

-0.4 4

-0.6 N

-0.8 b

_ | | | | | | | | |
10 0.5 1 15 2 25 3 35 4 4.5 5

Time (sec)

Figure 1. A sample digital sound signal

To apply the matrix cryptography to this signak tbllowing non-singular matrix is used as kernel:
02 -1
B = (44)
1 -05
The powers of this matrix are computed where psveee real numbers, in the range of [-5, 5].
The power variable is referred gs. Elements of resulting matrices are functions pf They are
sketched and shown in Fig. 2. The values 1, O arfdr-p, correspond td , 2x 2 identity and inverse

of B, respectively. In fact, Fig. 2 shows infinite nuenlof non-singular matrices, suitable to be used as
elements of encoder sequence. Here these matreesad as encoders, and the Matrix Cryptography is
applied on a sample digital sound signal.



Elements oBP

Figure 2. Real powers of matriB in the range [-5, 5]

N

According to size ofB, the elements of sequens } _ ,

corresponding to the sample sound
shown in Fig. 1, must be reformed to build a seqaesf 2x 2 square matrices, Iik{a)( k}::l. N andK
are appropriate numbers and in the case of thislggg N =4K . The elements of power sequence

{pk}:ﬂ, are generated randomly with a uniform distribotiaver the range [-5, 5]. The sequence of
encoder matrice§E, }_, is calculated by the rulg, = B . Encrypted matrix sequeng¥,} _, is the

element-by-element multiplication of the encodequemce {E,}’_ and data sequencéxk}:ﬂ.

k=1
Flattening the elements of matrix sequer{‘ef@}:ﬂ, yields the numerical sequence of encrypted data

{yi }iN:l. This sequence may assumed as a representatgoanairypted sound signal, which has the same
duration as the original sound signal. As mentionefre, amplitude of digital sounds are boundeithén
range [-1, 1], and the elements{qifi}iN:1 may not lie in this range. Hence, the seque{rﬁ;e}iN:l must be

normalized to obtain the sequer{qq}iNzl. The elements of this sequence are defined by:

y, :ﬁ (45)
1<j <N Yi

The resulting sequence represents a sound sigdalkaan encrypted form of the original sound
signal. A graphical representation of the encry@euind, is displayed in the Fig. 3. As it can bens¢he
sound is normalized and has a maximum amplitudealety 1. The overall view of the original sound,
shown in Fig. 1, and encrypted sound, shown in Eigs similar. To distinguish between them, a etos
view of these sound are shown in Fig. 4. The tic@pe of these views, begins in second 2 with the
length of 3 milliseconds.
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Figure 3. Encrypted form of the sound, shown in Fig. 1
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Figure 4. A closer view of the original and encrypted sosighals

Due to non-singularity of all encoder matrices, dhniginal data can be recovered completely from
the encrypted data. The decryption algorithm is ljie the encryption algorithm. The only thing, i
differs, is the sequence of powers. In the decoypphase, the negated form of power sequence of
encryption phase must be used. The resulting seigmal after decryption of the encrypted sound align
Is name Recovered Signal, hereafter. A block dragoé encryption and decryption phases is shown in
Fig. 5. The input signak[n] is passed into an encryption process which yielusypted signaly[n] .

Also the latter signal is passed to a decrypti@tess yielding the recovered sigrdin] .

X nN| ——» Encryption » V(N
Original Signal Encrypted Signal

yin] » Decryption ——» Xn|
Recovered Signal

Figure 5. Block diagram of encryption and decryption proesss
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Figure 6. Encryption/Decryption Error for the algorithm ajgal on the signal shown in Fig. 1



As known, the binary representation, which is usedigital computers, can not represent all real
numbers accurately and round-off error in not aabid. The numbers appeared in this
encryption/decryption algorithm, are real numbergéneral and most of them can not be represented
using finite number of bits. Because of the mer@tnound-off error, the recovered signal and oabin
signal are not equal necessarily and there exist&reryption/Decryption Error in the algorithm. $hi
error for the sample sound, shown in Fig. 1, cpoasing recovered signal, is shown in Fig. 6. The
maximum amplitude of this error is abobik10™, which is very small in comparison with the origin
sound amplitude. This existence of this error is ohthe limitations of the implementation of thatnix
cryptographic algorithms in digital computers aedtricts the application of this algorithm to thelds
which not need exact recovery of encrypted data.

3.3. Matrix Cryptography for Imagesin this sub-section application of Matrix Cryptoghg on
digital images is discussed. Images are 2-dimentgignals and the digital image can be represesged
a 2-dimensional sequence of color data. One ofulsefor coding approaches, used in digital comqte
is RGB coding. This coding is based upon the fhet,tevery color can be represented as a linear
combination of three base light beams: Red, Gremh Blue. Digital images are saved in digital
computers as 2-dimensional array of color datahEdement of this array is called Pixel. Every pixe
a digital image has a color, composed of three etes) red, green and blue. Each element of a dalor,
24-bit color coding standard, has 8 bits of datati& elements of a 24-bit RGB color are positiveger
ranging from O to 255. It is usual to scale thisga into the range of real numbers between 0 and 1.
Decomposition of color of every pixel in a digitalage, into corresponding red, green and blue eiésne
yields three numerical 2-dimensional arrays. Eathhese array are in the form of[i, j] where
i =1,2...M andj =12... N . M andN are vertical and horizontal size of picture respety. It is
assumed that values of elements of this array @matlized to be in the range [0, 1].

To apply matrix encryption on a sample image, tlethod of previous sub-section is used to create
encoder sequence. Note that, all sequences irstiissection assumed to be 2-dimensional and have
appropriate size and number of elements. The kenagix which is used in this sub-section is:

02 -1 0 0.1 03 0 0 0.

1 -05-01 O 0-07-02
0 -02 03 -1 0-01 01

D
D
02 0 106 01 0 0 05
(46)
03 0 00101 -1 0 Of
D
1

0 -08-01 0 1-05-01
0 -02 02 0 O0-02 02-

0.2 0 0 05 0.2 0 1 04

This matrix is non-singular and has non-negatigerevalues. So all of its real powers are real
matrices and can be used as encoder matrices. el thissmatrix as a kernel, the data in the original
image must be reformed in®x 8 matrices. Simply, the original image is divided&®8 image blocks
and the corresponding data for each block is usenldate the source matrix sequence. The sequénce o
powers is generated as a random variable, unifodislyibuted in the range [-10, 10]. Some of eletaen
of real powers of the matriB in this power range, are displayed in Fig. 7. Bhgorithm, using the
matrix (46) as kernel, is applied to the image smanvFig. 8-(a). The Encrypted algorithm is shown i
Fig. 8-(b). If the encrypted image is decrypted ¥elds the recovered image which is shown in 8ig.
(c). It can be seen that, the recovered imagerig sieilar to the original image and the probabiees
are negligible. The errors are due to round-off dndtations in binary representations, which is
discussed in previous sub-section. Some other empetal results are shown in Fig. 9. Matrix
cryptography is applied to several images and theavered back. The kernel of all experiments isesa
as defined in Eq. (43).
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Figure 7. Some elements of the real powers of maBixdefined in Eqg. (103) in the range [-10, 10]
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applied on image (a) and the image (b) is

obtained. Image (b) is an encrypted form of

(a). If the image (b) is decrypted, image (c),

the recovered image, is obtained.
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Figure 9. Some additional experimental results for Matriy@ography application for images



4. Conclusion

Thus, the main result of this study is an elaboratf new cryptographic method based on matrix
approach (matrix cryptography). Digital signalsc(uding digital sound signals and digital images),
which are used widely in modern media productsyeaéarea of application of the matrix cryptognaph
This method refers to symmetric-key cryptography.chyptographic key, the method uses special kernel
matrix, which is non-singular matrix, and some neamber p, which is used as a power of the kernel
matrix. In order to transmit cryptographic key fro8ender to Receiver, we can use public-key
cryptosystem. In order to protect this method fronpptographic attacks we can use a method of fast
change of random cryptographic keys transmitteghdtylic-key cryptosystem. Matrix cryptography can
be used effectively for protection of digital musied digital movies from forbidden access.
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